These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24978077)

  • 1. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.
    Lee S; Mason DR; In S; Park N
    Opt Express; 2014 Jun; 22 Suppl 4():A1145-52. PubMed ID: 24978077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.
    Yun J; Wang W; Bae TS; Park YH; Kang YC; Kim DH; Lee S; Lee GH; Song M; Kang JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9933-41. PubMed ID: 24060352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations.
    Sefunc MA; Okyay AK; Demir HV
    Opt Express; 2011 Jul; 19(15):14200-9. PubMed ID: 21934783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes.
    Wilken S; Wilkens V; Scheunemann D; Nowak RE; von Maydell K; Parisi J; Borchert H
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):287-300. PubMed ID: 25495167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical and electrical study of organic solar cells with a 2D grating anode.
    Sha WE; Choy WC; Wu Y; Chew WC
    Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells.
    Kim I; Lee TS; Jeong DS; Lee WS; Kim WM; Lee KS
    Opt Express; 2013 Jul; 21 Suppl 4():A669-76. PubMed ID: 24104493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars.
    Ren X; Cheng J; Zhang S; Li X; Rao T; Huo L; Hou J; Choy WC
    Small; 2016 Oct; 12(37):5200-5207. PubMed ID: 27487460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells.
    Rao KD; Hunger C; Gupta R; Kulkarni GU; Thelakkat M
    Phys Chem Chem Phys; 2014 Aug; 16(29):15107-10. PubMed ID: 24958552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode.
    Wang W; Bae TS; Park YH; Kim DH; Lee S; Min G; Lee GH; Song M; Yun J
    Nanoscale; 2014 Jun; 6(12):6911-24. PubMed ID: 24835145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic ITO-free polymer solar cell.
    Lin MY; Kang YL; Chen YC; Tsai TH; Lin SC; Huang YH; Chen YJ; Lu CY; Lin HY; Wang LA; Wu CC; Lee SC
    Opt Express; 2014 Mar; 22 Suppl 2():A438-45. PubMed ID: 24922253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures.
    Chen JY; Yu MH; Chang CY; Chao YH; Sun KW; Hsu CS
    ACS Appl Mater Interfaces; 2014 May; 6(9):6164-9. PubMed ID: 24735241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.
    Xie S; Hou G; Chen P; Jia B; Gu M
    Nanotechnology; 2017 Feb; 28(8):085402. PubMed ID: 27966477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes.
    Ye Z; Chaudhary S; Kuang P; Ho KM
    Opt Express; 2012 May; 20(11):12213-21. PubMed ID: 22714211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells.
    Stelling C; Singh CR; Karg M; König TA; Thelakkat M; Retsch M
    Sci Rep; 2017 Feb; 7():42530. PubMed ID: 28198406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical design of organic solar cell with hybrid plasmonic system.
    Sha WE; Choy WC; Chen YP; Chew WC
    Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous 1D-Metallic Microfibers Web for Flexible Organic Solar Cells.
    Hong K; Ham J; Kim BJ; Park JY; Lim DC; Lee JY; Lee JL
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27397-404. PubMed ID: 26580701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.
    Kim HS; Patel M; Park HH; Ray A; Jeong C; Kim J
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8662-9. PubMed ID: 26971560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.