These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Raju SV; Lin VY; Liu L; McNicholas CM; Karki S; Sloane PA; Tang L; Jackson PL; Wang W; Wilson L; Macon KJ; Mazur M; Kappes JC; DeLucas LJ; Barnes S; Kirk K; Tearney GJ; Rowe SM Am J Respir Cell Mol Biol; 2017 Jan; 56(1):99-108. PubMed ID: 27585394 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor beta1 inhibits cystic fibrosis transmembrane conductance regulator-dependent cAMP-stimulated alveolar epithelial fluid transport via a phosphatidylinositol 3-kinase-dependent mechanism. Roux J; Carles M; Koh H; Goolaerts A; Ganter MT; Chesebro BB; Howard M; Houseman BT; Finkbeiner W; Shokat KM; Paquet AC; Matthay MA; Pittet JF J Biol Chem; 2010 Feb; 285(7):4278-90. PubMed ID: 19996317 [TBL] [Abstract][Full Text] [Related]
5. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure. Tyrrell J; Qian X; Freire J; Tarran R Am J Physiol Lung Cell Mol Physiol; 2015 May; 308(10):L1068-77. PubMed ID: 25795727 [TBL] [Abstract][Full Text] [Related]
6. A Neutralizing Aptamer to TGFBR2 and miR-145 Antagonism Rescue Cigarette Smoke- and TGF-β-Mediated CFTR Expression. Dutta RK; Chinnapaiyan S; Rasmussen L; Raju SV; Unwalla HJ Mol Ther; 2019 Feb; 27(2):442-455. PubMed ID: 30595527 [TBL] [Abstract][Full Text] [Related]
7. Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Lambert JA; Raju SV; Tang LP; McNicholas CM; Li Y; Courville CA; Farris RF; Coricor GE; Smoot LH; Mazur MM; Dransfield MT; Bolger GB; Rowe SM Am J Respir Cell Mol Biol; 2014 Mar; 50(3):549-58. PubMed ID: 24106801 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance. Zaidman NA; Panoskaltsis-Mortari A; O'Grady SM Am J Physiol Cell Physiol; 2016 Aug; 311(2):C225-36. PubMed ID: 27306366 [TBL] [Abstract][Full Text] [Related]
9. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Sherwood CL; Boitano S Respir Res; 2016 May; 17(1):57. PubMed ID: 27184162 [TBL] [Abstract][Full Text] [Related]
10. Role of Smad3 and p38 Signalling in Cigarette Smoke-induced CFTR and BK dysfunction in Primary Human Bronchial Airway Epithelial Cells. Sailland J; Grosche A; Baumlin N; Dennis JS; Schmid A; Krick S; Salathe M Sci Rep; 2017 Sep; 7(1):10506. PubMed ID: 28874823 [TBL] [Abstract][Full Text] [Related]
11. Tgf-β1 inhibits Cftr biogenesis and prevents functional rescue of ΔF508-Cftr in primary differentiated human bronchial epithelial cells. Snodgrass SM; Cihil KM; Cornuet PK; Myerburg MM; Swiatecka-Urban A PLoS One; 2013; 8(5):e63167. PubMed ID: 23671668 [TBL] [Abstract][Full Text] [Related]
12. Stimulation of beta 2-adrenergic receptor increases cystic fibrosis transmembrane conductance regulator expression in human airway epithelial cells through a cAMP/protein kinase A-independent pathway. Taouil K; Hinnrasky J; Hologne C; Corlieu P; Klossek JM; Puchelle E J Biol Chem; 2003 May; 278(19):17320-7. PubMed ID: 12621035 [TBL] [Abstract][Full Text] [Related]
13. Carvedilol binding to β2-adrenergic receptors inhibits CFTR-dependent anion secretion in airway epithelial cells. Peitzman ER; Zaidman NA; Maniak PJ; O'Grady SM Am J Physiol Lung Cell Mol Physiol; 2016 Jan; 310(1):L50-8. PubMed ID: 26566905 [TBL] [Abstract][Full Text] [Related]
14. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model? Molenda N; Urbanova K; Weiser N; Kusche-Vihrog K; Günzel D; Schillers H PLoS One; 2014; 9(6):e100621. PubMed ID: 24945658 [TBL] [Abstract][Full Text] [Related]
15. Comparison of a novel potentiator of CFTR channel activity to ivacaftor in ameliorating mucostasis caused by cigarette smoke in primary human bronchial airway epithelial cells. Tanjala AC; Jiang JX; Eckford PDW; Ramjeesingh M; Li C; Huan LJ; Langeveld G; Townsend C; Paone DV; Busch-Petersen J; Pekhletski R; Tang L; Raju V; Rowe SM; Bear CE Respir Res; 2024 Jul; 25(1):269. PubMed ID: 38982492 [TBL] [Abstract][Full Text] [Related]
16. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Namkung W; Finkbeiner WE; Verkman AS Mol Biol Cell; 2010 Aug; 21(15):2639-48. PubMed ID: 20554763 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-β1 impairs CFTR-mediated anion secretion across cultured porcine vas deferens epithelial monolayer via the p38 MAPK pathway. Yi S; Pierucci-Alves F; Schultz BD Am J Physiol Cell Physiol; 2013 Oct; 305(8):C867-76. PubMed ID: 23903699 [TBL] [Abstract][Full Text] [Related]
18. Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells. Mitash N; Mu F; Donovan JE; Myerburg MM; Ranganathan S; Greene CM; Swiatecka-Urban A Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31590401 [TBL] [Abstract][Full Text] [Related]
19. β Zhang RG; Yip CY; Pan KW; Cai MY; Ko WH J Cell Physiol; 2020 Nov; 235(11):8387-8401. PubMed ID: 32239700 [TBL] [Abstract][Full Text] [Related]