These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24978265)

  • 21. Ionization of Rydberg atoms by standing-wave light fields.
    Anderson SE; Raithel G
    Nat Commun; 2013; 4():2967. PubMed ID: 24336092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion Imaging via Long-Range Interaction with Rydberg Atoms.
    Gross C; Vogt T; Li W
    Phys Rev Lett; 2020 Feb; 124(5):053401. PubMed ID: 32083920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave-assisted Rydberg electromagnetically induced transparency.
    Vogt T; Gross C; Gallagher TF; Li W
    Opt Lett; 2018 Apr; 43(8):1822-1825. PubMed ID: 29652373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pole analysis of EIT-AT spectrum with Rydberg atoms.
    Shi M; Jiao Y; Zhao J
    Opt Express; 2021 Nov; 29(23):37253-37261. PubMed ID: 34808802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor.
    Simons MT; Gordon JA; Holloway CL
    Appl Opt; 2018 Aug; 57(22):6456-6460. PubMed ID: 30117878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor.
    Baluktsian T; Huber B; Löw R; Pfau T
    Phys Rev Lett; 2013 Mar; 110(12):123001. PubMed ID: 25166800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromagnetically induced transparency with Rydberg atoms.
    Petrosyan D; Otterbach J; Fleischhauer M
    Phys Rev Lett; 2011 Nov; 107(21):213601. PubMed ID: 22181878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms.
    Han J; Vogt T; Gross C; Jaksch D; Kiffner M; Li W
    Phys Rev Lett; 2018 Mar; 120(9):093201. PubMed ID: 29547326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the Dipole Blockade and Ionization Rate of Rydberg Atoms in Strong Electric Fields.
    Stecker M; Nold R; Steinert LM; Grimmel J; Petrosyan D; Fortágh J; Günther A
    Phys Rev Lett; 2020 Sep; 125(10):103602. PubMed ID: 32955299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electric Rydberg-Atom Interferometry.
    Palmer JE; Hogan SD
    Phys Rev Lett; 2019 Jun; 122(25):250404. PubMed ID: 31347868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field.
    Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y
    Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].
    Shang HN; Quan W; Chen Y; Li Y; Li H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):305-9. PubMed ID: 27209720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.
    Sedlacek JA; Kim E; Rittenhouse ST; Weck PF; Sadeghpour HR; Shaffer JP
    Phys Rev Lett; 2016 Apr; 116(13):133201. PubMed ID: 27081976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Constant scaled-energy spectroscopy of Rydberg atoms in a static electric field].
    Cao JW; Liu XJ; Zhao Z; Zhan MS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):5-8. PubMed ID: 12940013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Storing images in warm atomic vapor.
    Shuker M; Firstenberg O; Pugatch R; Ron A; Davidson N
    Phys Rev Lett; 2008 Jun; 100(22):223601. PubMed ID: 18643420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
    Bitzer A; Ortner A; Walther M
    Appl Opt; 2010 Jul; 49(19):E1-6. PubMed ID: 20648112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution imaging of Rydberg atoms in optical lattices using an aspheric-lens objective in vacuum.
    Shen C; Chen C; Wu XL; Dong S; Cui Y; You L; Tey MK
    Rev Sci Instrum; 2020 Jun; 91(6):063202. PubMed ID: 32611022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna.
    Klepper CC; Isler RC; Hillairet J; Martin EH; Colas L; Ekedahl A; Goniche M; Harris JH; Hillis DL; Panayotis S; Pegourié B; Lotte P; Colledani G; Martin V;
    Phys Rev Lett; 2013 May; 110(21):215005. PubMed ID: 23901403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber.
    Xie Y; Fan X; Chen Y; Wilson JD; Simons RN; Xiao JQ
    Sci Rep; 2017 Jan; 7():40490. PubMed ID: 28071734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly sensitive atomic based MW interferometry.
    Shylla D; Nyakang'o EO; Pandey K
    Sci Rep; 2018 Jun; 8(1):8692. PubMed ID: 29875366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.