BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24978281)

  • 1. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of activation products associated with Havar foils from a GE PETtrace medical cyclotron using high resolution gamma spectroscopy.
    Manickam V; Brey RR; Jenkins PA; Christian PE
    Health Phys; 2009 Feb; 96(2 Suppl):S37-42. PubMed ID: 19125055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of induced radionuclides in replacement parts and liquid wastes in a medical cyclotron solely used for production of 18F for [18F]FDG.
    Mochizuki S; Ishigure N; Ogata Y; Kobayashi T
    Appl Radiat Isot; 2013 Apr; 74():137-43. PubMed ID: 23419430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs. niobium-sputtered Havar as entrance foils.
    Avila-Rodriguez MA; Wilson JS; McQuarrie SA
    Appl Radiat Isot; 2008 Dec; 66(12):1775-80. PubMed ID: 18539469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the residual radioactivity induced in the front foil of a target assembly in a modern medical cyclotron.
    O'Donnell RG; León Vintró L; Duffy GJ; Mitchell PI
    Appl Radiat Isot; 2004; 60(2-4):539-42. PubMed ID: 14987699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective production of ⁶⁵Zn with a PET cyclotron.
    Lucconi G; Cicoria G; Pancaldi D; Malizia C; Marengo M
    Appl Radiat Isot; 2012 Aug; 70(8):1590-4. PubMed ID: 22732395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High beam current operation of a PETtrace™ cyclotron for 18F- production.
    Eberl S; Eriksson T; Svedberg O; Norling J; Henderson D; Lam P; Fulham M
    Appl Radiat Isot; 2012 Jun; 70(6):922-30. PubMed ID: 22476015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
    Zanzonico P; Dauer L; St Germain J
    Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioisotopic Purity of Sodium Pertechnetate 99mTc Produced with a Medium-Energy Cyclotron: Implications for Internal Radiation Dose, Image Quality, and Release Specifications.
    Selivanova SV; Lavallée É; Senta H; Caouette L; Sader JA; van Lier EJ; Zyuzin A; van Lier JE; Guérin B; Turcotte É; Lecomte R
    J Nucl Med; 2015 Oct; 56(10):1600-8. PubMed ID: 26205300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the neutron radiation field with activation foils and intermittent irradiations around a PETtrace biomedical cyclotron.
    Benavente-Castillo JA; Lacerda MAS; Ferreira AV; Dalle HM; Da Silva TA
    Appl Radiat Isot; 2019 Nov; 153():108823. PubMed ID: 31400649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the performance and longevity of Nb, Pt, Ta, Ti, Zr, and ZrO₂-sputtered Havar foils for the high-power production of reactive [18F]F by proton irradiation of [18O]H2O.
    Gagnon K; Wilson JS; Sant E; Backhouse CJ; McQuarrie SA
    Appl Radiat Isot; 2011 Oct; 69(10):1330-6. PubMed ID: 21782460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solid target system with remote handling of irradiated targets for PET cyclotrons.
    Siikanen J; Tran TA; Olsson TG; Strand SE; Sandell A
    Appl Radiat Isot; 2014 Dec; 94():294-301. PubMed ID: 25265518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.
    Martin TM; Bhakta V; Al-Harbi A; Hackemack M; Tabacaru G; Tribble R; Shankar S; Akabani G
    Health Phys; 2014 Jul; 107(1):1-9. PubMed ID: 24849899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.