BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24978295)

  • 21. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macrocyclic cell penetrating peptides: a study of structure-penetration properties.
    Traboulsi H; Larkin H; Bonin MA; Volkov L; Lavoie CL; Marsault É
    Bioconjug Chem; 2015 Mar; 26(3):405-11. PubMed ID: 25654426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides.
    Nakase I; Takeuchi T; Tanaka G; Futaki S
    Adv Drug Deliv Rev; 2008 Mar; 60(4-5):598-607. PubMed ID: 18045727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acyl moieties: improving Pro-rich peptide uptake inside HeLa cells.
    Fernández-Carneado J; Kogan MJ; Van Mau N; Pujals S; López-Iglesias C; Heitz F; Giralt E
    J Pept Res; 2005 Jun; 65(6):580-90. PubMed ID: 15885117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide.
    Kanwar JR; Gibbons J; Verma AK; Kanwar RK
    Anticancer Drugs; 2012 Jun; 23(5):471-82. PubMed ID: 22241171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools.
    Park SE; Sajid MI; Parang K; Tiwari RK
    Mol Pharm; 2019 Sep; 16(9):3727-3743. PubMed ID: 31329448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter.
    Kumar S; Mandal D; El-Mowafi SA; Mozaffari S; Tiwari RK; Parang K
    Pharmaceutics; 2020 Sep; 12(9):. PubMed ID: 32899170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides.
    Oba M; Demizu Y; Yamashita H; Kurihara M; Tanaka M
    Bioorg Med Chem; 2015 Aug; 23(15):4911-4918. PubMed ID: 26048025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides.
    Seisel Q; Pelletier F; Deshayes S; Boisguerin P
    Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1533-1545. PubMed ID: 31283917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic Peptide Containing Hydrophobic and Positively Charged Residues as a Drug Delivery System for Curcumin.
    Shirazi AN; El-Sayed NS; Tiwari RK; Tavakoli K; Parang K
    Curr Drug Deliv; 2016; 13(3):409-17. PubMed ID: 26511089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclic peptide-capped gold nanoparticles as drug delivery systems.
    Nasrolahi Shirazi A; Mandal D; Tiwari RK; Guo L; Lu W; Parang K
    Mol Pharm; 2013 Feb; 10(2):500-11. PubMed ID: 22998473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amphiphilic Cell-Penetrating Peptides Containing Arginine and Hydrophobic Residues as Protein Delivery Agents.
    Moreno J; Zoghebi K; Salehi D; Kim L; Shoushtari SK; Tiwari RK; Parang K
    Pharmaceuticals (Basel); 2023 Mar; 16(3):. PubMed ID: 36986567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides.
    Maiolo JR; Ferrer M; Ottinger EA
    Biochim Biophys Acta; 2005 Jun; 1712(2):161-72. PubMed ID: 15935328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides.
    Wallbrecher R; Verdurmen WP; Schmidt S; Bovee-Geurts PH; Broecker F; Reinhardt A; van Kuppevelt TH; Seeberger PH; Brock R
    Cell Mol Life Sci; 2014 Jul; 71(14):2717-29. PubMed ID: 24270856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of cell-penetrating peptide-mediated peptide delivery.
    Jones SW; Christison R; Bundell K; Voyce CJ; Brockbank SM; Newham P; Lindsay MA
    Br J Pharmacol; 2005 Aug; 145(8):1093-102. PubMed ID: 15937518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides.
    Lättig-Tünnemann G; Prinz M; Hoffmann D; Behlke J; Palm-Apergi C; Morano I; Herce HD; Cardoso MC
    Nat Commun; 2011 Aug; 2():453. PubMed ID: 21878907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides.
    Nakase I; Akita H; Kogure K; Gräslund A; Langel U; Harashima H; Futaki S
    Acc Chem Res; 2012 Jul; 45(7):1132-9. PubMed ID: 22208383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT.
    Gao W; Yang X; Lin Z; He B; Mei D; Wang D; Zhang H; Zhang H; Dai W; Wang X; Zhang Q
    J Control Release; 2017 Sep; 261():174-186. PubMed ID: 28662902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.