BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24978325)

  • 1. Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review.
    Ghorpade U; Suryawanshi M; Shin SW; Gurav K; Patil P; Pawar S; Hong CW; Kim JH; Kolekar S
    Chem Commun (Camb); 2014 Oct; 50(77):11258-73. PubMed ID: 24978325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting.
    Ghorpade UV; Suryawanshi MP; Shin SW; Hong CW; Kim I; Moon JH; Yun JH; Kim JH; Kolekar SS
    Phys Chem Chem Phys; 2015 Aug; 17(30):19777-88. PubMed ID: 26153341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer.
    Hou Y; Azimi H; Gasparini N; Salvador M; Chen W; Khanzada LS; Brandl M; Hock R; Brabec CJ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21100-6. PubMed ID: 26353923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping.
    Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu₂ZnSnS(4x)Se(4(1-x)) solar cells from polar nanocrystal inks.
    van Embden J; Chesman AS; Della Gaspera E; Duffy NW; Watkins SE; Jasieniak JJ
    J Am Chem Soc; 2014 Apr; 136(14):5237-40. PubMed ID: 24690032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-Solution-Processed Cu
    Suryawanshi MP; Ghorpade UV; Suryawanshi UP; He M; Kim J; Gang MG; Patil PS; Moholkar AV; Yun JH; Kim JH
    ACS Omega; 2017 Dec; 2(12):9211-9220. PubMed ID: 31457436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a High-Quality Cu
    Zhao W; Yu F; Liu SF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):634-639. PubMed ID: 30560655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO
    Gour KS; Pawar PS; Lee M; Karade VC; Yun JS; Heo J; Park J; Yun JH; Kim JH
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30010-30019. PubMed ID: 38814930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 8% Efficiency Cu
    Jo E; Gang MG; Shim H; Suryawanshi MP; Ghorpade UV; Kim JH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23118-23124. PubMed ID: 31252467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals.
    Guo Q; Ford GM; Yang WC; Walker BC; Stach EA; Hillhouse HW; Agrawal R
    J Am Chem Soc; 2010 Dec; 132(49):17384-6. PubMed ID: 21090644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells.
    Park SW; He M; Jang JS; Kamble GU; Suryawanshi UP; Baek MC; Suryawanshi MP; Gang MG; Park Y; Choi HJ; Hao X; Shin SW; Kim JH
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16328-16339. PubMed ID: 38516946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significantly Improving the Crystal Growth of a Cu
    Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells.
    Xiao ZY; Yao B; Li YF; Ding ZH; Gao ZM; Zhao HF; Zhang LG; Zhang ZZ; Sui YR; Wang G
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17334-42. PubMed ID: 27323648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenization of Cu
    Wang X; Xie Y; Bateer B; Pan K; Jiao Y; Xiong N; Wang S; Fu H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37662-37670. PubMed ID: 29019395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu
    Aruna-Devi R; Latha M; Velumani S; Santos-Cruz J; Murali B; Chávez-Carvayar JÁ; Pulgarín-Agudelo FA; Vigil-Galán O
    RSC Adv; 2019 Jun; 9(32):18420-18428. PubMed ID: 35515224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping of Sb into Cu
    Zhao B; Deng Y; Cao L; Zhu J; Zhou Z
    Front Chem; 2022; 10():974761. PubMed ID: 36017168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Solid-Gas Reactions at Nanoscale for Enhanced Thin Film Morphologies and Device Performances in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.
    Jiang C; Hsieh YT; Zhao H; Zhou H; Yang Y
    J Am Chem Soc; 2015 Sep; 137(34):11069-75. PubMed ID: 26281006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Cu-Zn-Sn-O Precursor to Optimize CZTSSe Thin Films Fabricated by Se Doping With CZTS Thin Films.
    Li Q; Hu J; Cui Y; Wang J; Hao Y; Shen T; Duan L
    Front Chem; 2021; 9():621549. PubMed ID: 33937187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route.
    Woo K; Kim Y; Yang W; Kim K; Kim I; Oh Y; Kim JY; Moon J
    Sci Rep; 2013 Oct; 3():3069. PubMed ID: 24166151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.