BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24978463)

  • 1. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleic acid based fluorescent nanothermometers.
    Ebrahimi S; Akhlaghi Y; Kompany-Zareh M; Rinnan A
    ACS Nano; 2014 Oct; 8(10):10372-82. PubMed ID: 25265370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature sensing using fluorescent nanothermometers.
    Vetrone F; Naccache R; Zamarrón A; Juarranz de la Fuente A; Sanz-Rodríguez F; Martinez Maestro L; Martín Rodriguez E; Jaque D; García Solé J; Capobianco JA
    ACS Nano; 2010 Jun; 4(6):3254-8. PubMed ID: 20441184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric nanothermometer based on an emissive Ln3+-organic framework.
    Cadiau A; Brites CD; Costa PM; Ferreira RA; Rocha J; Carlos LD
    ACS Nano; 2013 Aug; 7(8):7213-8. PubMed ID: 23869817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties.
    Piñol R; Brites CD; Bustamante R; Martínez A; Silva NJ; Murillo JL; Cases R; Carrey J; Estepa C; Sosa C; Palacio F; Carlos LD; Millán A
    ACS Nano; 2015 Mar; 9(3):3134-42. PubMed ID: 25693033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers.
    Spicer G; Efeyan A; Adam AP; Thompson SA
    J Biophotonics; 2019 Sep; 12(9):e201900044. PubMed ID: 31034763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells.
    Oyama K; Takabayashi M; Takei Y; Arai S; Takeoka S; Ishiwata S; Suzuki M
    Lab Chip; 2012 May; 12(9):1591-3. PubMed ID: 22437040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers.
    Balabhadra S; Debasu ML; Brites CD; Nunes LA; Malta OL; Rocha J; Bettinelli M; Carlos LD
    Nanoscale; 2015 Nov; 7(41):17261-7. PubMed ID: 26426085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Dots as New Generation Materials for Nanothermometer: Review.
    Mohammed LJ; Omer KM
    Nanoscale Res Lett; 2020 Sep; 15(1):182. PubMed ID: 32960340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review.
    Qiao J; Mu X; Qi L
    Biosens Bioelectron; 2016 Nov; 85():403-413. PubMed ID: 27203462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances and challenges for fluorescence nanothermometry.
    Zhou J; Del Rosal B; Jaque D; Uchiyama S; Jin D
    Nat Methods; 2020 Oct; 17(10):967-980. PubMed ID: 32989319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular thermometry by using fluorescent gold nanoclusters.
    Shang L; Stockmar F; Azadfar N; Nienhaus GU
    Angew Chem Int Ed Engl; 2013 Oct; 52(42):11154-7. PubMed ID: 24039076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots.
    Han Y; Liu Y; Zhao H; Vomiero A; Li R
    J Mater Chem B; 2021 May; 9(20):4111-4119. PubMed ID: 34037068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanothermometry: From Microscopy to Thermal Treatments.
    Zhou H; Sharma M; Berezin O; Zuckerman D; Berezin MY
    Chemphyschem; 2016 Jan; 17(1):27-36. PubMed ID: 26443335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing.
    Xu Y; Yang Y; Lin S; Xiao L
    Anal Chem; 2020 Dec; 92(23):15632-15638. PubMed ID: 33170648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of irreversible optical nanothermometers for thermal ablations.
    Gustafson TP; Cao Q; Wang ST; Berezin MY
    Chem Commun (Camb); 2013 Jan; 49(7):680-2. PubMed ID: 23223185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window.
    Cerón EN; Ortgies DH; Del Rosal B; Ren F; Benayas A; Vetrone F; Ma D; Sanz-Rodríguez F; Solé JG; Jaque D; Rodríguez EM
    Adv Mater; 2015 Aug; 27(32):4781-7. PubMed ID: 26174612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Dependent Accuracy of Nanoscale Thermometers.
    Alicki R; Leitner DM
    J Phys Chem B; 2015 Jul; 119(29):9000-5. PubMed ID: 25260146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers.
    Ximendes EC; Santos WQ; Rocha U; Kagola UK; Sanz-Rodríguez F; Fernández N; Gouveia-Neto Ada S; Bravo D; Domingo AM; del Rosal B; Brites CD; Carlos LD; Jaque D; Jacinto C
    Nano Lett; 2016 Mar; 16(3):1695-703. PubMed ID: 26845418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.