These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24978500)

  • 1. Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber.
    Gattass RR; Brandon Shaw L; Sanghera JS
    Opt Lett; 2014 Jun; 39(12):3418-20. PubMed ID: 24978500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications.
    Krzempek K; Sobon G; Abramski KM
    Opt Express; 2013 Aug; 21(17):20023-31. PubMed ID: 24105549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber.
    Liu L; Qin G; Tian Q; Zhao D; Qin W
    Opt Express; 2011 May; 19(11):10041-8. PubMed ID: 21643262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of near-diffraction-limited, high-power supercontinuum from 1.57  μm to 12  μm with cascaded fluoride and chalcogenide fibers.
    Guo K; Martinez RA; Plant G; Maksymiuk L; Janiszewski B; Freeman MJ; Maynard RL; Islam MN; Terry FL; Bedford R; Gibson R; Chenard F; Chatigny S; Ifarraguerri AI
    Appl Opt; 2018 Apr; 57(10):2519-2532. PubMed ID: 29714236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by an nanosecond-pulse fiber laser source.
    Belden P; Chen D; Teodoro FD
    Opt Lett; 2015 Mar; 40(6):958-61. PubMed ID: 25768156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared.
    Iwakuni K; Okubo S; Tadanaga O; Inaba H; Onae A; Hong FL; Sasada H
    Opt Lett; 2016 Sep; 41(17):3980-3. PubMed ID: 27607952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.9-3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio.
    Yin K; Zhang B; Yao J; Yang L; Liu G; Hou J
    Opt Lett; 2016 Nov; 41(21):5067-5070. PubMed ID: 27805687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber.
    Kedenburg S; Steinle T; Mörz F; Steinmann A; Giessen H
    Opt Lett; 2015 Jun; 40(11):2668-71. PubMed ID: 26030585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact 3-8  μm supercontinuum generation in a low-loss As
    Robichaud LR; Fortin V; Gauthier JC; Châtigny S; Couillard JF; Delarosbil JL; Vallée R; Bernier M
    Opt Lett; 2016 Oct; 41(20):4605-4608. PubMed ID: 28005847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier.
    Geng J; Wang Q; Jiang S
    Appl Opt; 2012 Mar; 51(7):834-40. PubMed ID: 22410883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber.
    Møller U; Yu Y; Kubat I; Petersen CR; Gai X; Brilland L; Méchin D; Caillaud C; Troles J; Luther-Davies B; Bang O
    Opt Express; 2015 Feb; 23(3):3282-91. PubMed ID: 25836186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power.
    Liu K; Liu J; Shi H; Tan F; Wang P
    Opt Express; 2014 Oct; 22(20):24384-91. PubMed ID: 25322014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.
    Baudisch M; Hemmer M; Pires H; Biegert J
    Opt Lett; 2014 Oct; 39(20):5802-5. PubMed ID: 25361089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip.
    Liu YH; Xie ZD; Ling W; Yuan Y; Lv XJ; Lu J; Hu XP; Zhao G; Zhu SN
    Opt Express; 2011 Aug; 19(18):17500-5. PubMed ID: 21935116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers.
    Théberge F; Thiré N; Daigle JF; Mathieu P; Schmidt BE; Messaddeq Y; Vallée R; Légaré F
    Opt Lett; 2014 Nov; 39(22):6474-7. PubMed ID: 25490497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system.
    Yang W; Zhang B; Yin K; Zhou X; Hou J
    Opt Express; 2013 Aug; 21(17):19732-42. PubMed ID: 24105521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide.
    Wang J; Nuccio S; Wu X; Yilmaz OF; Zhang L; Fazal I; Yang JY; Yue Y; Willner AE
    Opt Lett; 2010 Apr; 35(7):1067-9. PubMed ID: 20364219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-mode oscillations of diode-pumped mid-infrared Er:Y
    Zhang Y; Cai Y; Xu B; Zhang J; Xiao L; Liu P; Xu X
    Opt Express; 2019 Oct; 27(22):31783-31789. PubMed ID: 31684403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.
    Devi K; Chaitanya Kumar S; Ebrahim-Zadeh M
    Opt Lett; 2012 Dec; 37(24):5049-51. PubMed ID: 23258001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picosecond tunable mode locking of a Cr2+:ZnSe laser with a nonlinear mirror.
    Dherbecourt JB; Denoeud A; Melkonian JM; Raybaut M; Godard A; Lefebvre M; Rosencher E
    Opt Lett; 2011 Mar; 36(5):751-3. PubMed ID: 21368971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.