These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 24978511)

  • 1. Frequency scanning from subwavelength aperture array.
    Yang R; Zhang J; Wang H
    Opt Lett; 2014 Jun; 39(12):3461-3. PubMed ID: 24978511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission enhancement through deep subwavelength apertures using connected split ring resonators.
    Ates D; Cakmak AO; Colak E; Zhao R; Soukoulis CM; Ozbay E
    Opt Express; 2010 Feb; 18(4):3952-66. PubMed ID: 20389408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators.
    Guo Y; Zhou J
    Opt Express; 2014 Nov; 22(22):27136-43. PubMed ID: 25401864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array.
    Bao YJ; Peng RW; Shu DJ; Wang M; Lu X; Shao J; Lu W; Ming NB
    Phys Rev Lett; 2008 Aug; 101(8):087401. PubMed ID: 18764658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures.
    Cao H; Nahata A
    Opt Express; 2004 Aug; 12(16):3664-72. PubMed ID: 19483897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures.
    Hou B; Liao XQ; Poon JK
    Opt Express; 2010 Feb; 18(4):3946-51. PubMed ID: 20389407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators.
    Guo Y; Zhou J
    Sci Rep; 2015 Jan; 5():8144. PubMed ID: 25634496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures.
    Xiao S; Peng L; Mortensen NA
    Opt Express; 2010 Mar; 18(6):6040-7. PubMed ID: 20389624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.
    Sam S; Lim S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):657-60. PubMed ID: 23549526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant metalenses for breaking the diffraction barrier.
    Lemoult F; Lerosey G; de Rosny J; Fink M
    Phys Rev Lett; 2010 May; 104(20):203901. PubMed ID: 20867029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of resonant acoustic transmission through subwavelength apertures.
    Christensen J; Martin-Moreno L; Garcia-Vidal FJ
    Phys Rev Lett; 2008 Jul; 101(1):014301. PubMed ID: 18764114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence enhancement from an array of subwavelength metal apertures.
    Liu Y; Blair S
    Opt Lett; 2003 Apr; 28(7):507-9. PubMed ID: 12696598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave transmission through a single subwavelength annular aperture in a metal plate.
    Lockyear MJ; Hibbins AP; Sambles JR; Lawrence CR
    Phys Rev Lett; 2005 May; 94(19):193902. PubMed ID: 16090173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks.
    Li WD; Hu J; Chou SY
    Opt Express; 2011 Oct; 19(21):21098-108. PubMed ID: 21997118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures.
    Huang S; Fang X; Wang X; Assouar B; Cheng Q; Li Y
    J Acoust Soc Am; 2019 Jan; 145(1):254. PubMed ID: 30710935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission resonances through aperiodic arrays of subwavelength apertures.
    Matsui T; Agrawal A; Nahata A; Vardeny ZV
    Nature; 2007 Mar; 446(7135):517-21. PubMed ID: 17392781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of broadband terahertz radiation using a periodic array of conically tapered apertures.
    Liu S; Vardeny ZV; Nahata A
    Opt Express; 2013 May; 21(10):12363-72. PubMed ID: 23736454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene.
    Degl'Innocenti R; Jessop DS; Shah YD; Sibik J; Zeitler JA; Kidambi PR; Hofmann S; Beere HE; Ritchie DA
    ACS Nano; 2014 Mar; 8(3):2548-54. PubMed ID: 24558983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal.
    Lee SG; Kim SH; Kim TT; Kim JE; Park HY; Kee CS
    Opt Express; 2012 Apr; 20(8):8309-16. PubMed ID: 22513542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.
    Je Y; Lee H; Park J; Moon W
    J Acoust Soc Am; 2010 Jun; 127(6):3494-502. PubMed ID: 20550249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.