These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24978568)

  • 1. Three-dimensional winged nanocone optical antennas.
    Huttunen MJ; Lindfors K; Andriano D; Mäkitalo J; Bautista G; Lippitz M; Kauranen M
    Opt Lett; 2014 Jun; 39(12):3686-9. PubMed ID: 24978568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single particle plasmon resonance study of 3D conical nanoantennas.
    Schäfer C; Gollmer DA; Horrer A; Fulmes J; Weber-Bargioni A; Cabrini S; Schuck PJ; Kern DP; Fleischer M
    Nanoscale; 2013 Sep; 5(17):7861-6. PubMed ID: 23846476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nickel nanoantennas.
    Chen J; Albella P; Pirzadeh Z; Alonso-González P; Huth F; Bonetti S; Bonanni V; Åkerman J; Nogués J; Vavassori P; Dmitriev A; Aizpurua J; Hillenbrand R
    Small; 2011 Aug; 7(16):2341-7. PubMed ID: 21678553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams.
    Bautista G; Huttunen MJ; Kontio JM; Simonen J; Kauranen M
    Opt Express; 2013 Sep; 21(19):21918-23. PubMed ID: 24104084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.
    Hoffmann B; Vassant S; Chen XW; Götzinger S; Sandoghdar V; Christiansen S
    Nanotechnology; 2015 Oct; 26(40):404001. PubMed ID: 26376922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing and enhancement of second-harmonic generation in optical gap antennas.
    Berthelot J; Bachelier G; Song M; Rai P; Colas des Francs G; Dereux A; Bouhelier A
    Opt Express; 2012 May; 20(10):10498-508. PubMed ID: 22565675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative spectral tuning of the vertical versus base modes in plasmonic nanocones.
    Fulmes J; Schäfer C; Kern DP; Adam PM; Fleischer M
    Nanotechnology; 2019 Oct; 30(41):415201. PubMed ID: 31339108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delocalization of Nonlinear Optical Responses in Plasmonic Nanoantennas.
    Viarbitskaya S; Demichel O; Cluzel B; Colas des Francs G; Bouhelier A
    Phys Rev Lett; 2015 Nov; 115(19):197401. PubMed ID: 26588413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
    Herrmann JF; Höppener C
    Beilstein J Nanotechnol; 2018; 9():2188-2197. PubMed ID: 30202689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures.
    Bautista G; Kakko JP; Dhaka V; Zang X; Karvonen L; Jiang H; Kauppinen E; Lipsanen H; Kauranen M
    Opt Express; 2017 May; 25(11):12463-12468. PubMed ID: 28786602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel C; Hebestreit E; Mühlig S; Rockstuhl C; Burger S; Lederer F; Pertsch T
    Opt Express; 2014 Apr; 22(8):9971-82. PubMed ID: 24787879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of plasmonic resonant nanorods: an analytical approach to optical antennas.
    Kalousek R; Dub P; Břínek L; Šikola T
    Opt Express; 2012 Jul; 20(16):17916-27. PubMed ID: 23038341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer.
    Olmon RL; Rang M; Krenz PM; Lail BA; Saraf LV; Boreman GD; Raschke MB
    Phys Rev Lett; 2010 Oct; 105(16):167403. PubMed ID: 21231012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.