These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24978783)

  • 1. Fiber-optic flow sensors for high-temperature environment operation up to 800°C.
    Chen R; Yan A; Wang Q; Chen KP
    Opt Lett; 2014 Jul; 39(13):3966-9. PubMed ID: 24978783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation.
    Chen R; Yan A; Li M; Chen T; Wang Q; Canning J; Cook K; Chen KP
    Opt Lett; 2013 Jul; 38(14):2490-2. PubMed ID: 23939090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing.
    Jewart CM; Wang Q; Canning J; Grobnic D; Mihailov SJ; Chen KP
    Opt Lett; 2010 May; 35(9):1443-5. PubMed ID: 20436597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical fiber anemometer based on laser heated fiber Bragg gratings.
    Gao S; Zhang AP; Tam HY; Cho LH; Lu C
    Opt Express; 2011 May; 19(11):10124-30. PubMed ID: 21643270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.
    Caldas P; Jorge PA; Rego G; Frazão O; Santos JL; Ferreira LA; Araújo F
    Appl Opt; 2011 Jun; 50(17):2738-43. PubMed ID: 21673779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing.
    Chen T; Chen R; Jewart C; Zhang B; Cook K; Canning J; Chen KP
    Opt Lett; 2011 Sep; 36(18):3542-4. PubMed ID: 21931384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Low-Power-Consumption All-Fiber-Optic Anemometer with Simple System Design.
    Zhang Y; Wang F; Duan Z; Liu Z; Liu Z; Wu Z; Gu Y; Sun C; Peng W
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28906446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating.
    Jiang X; Wang K; Li J; Zhan H; Song Z; Che G; Lyu G
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer micro-fiber Bragg grating.
    Rajan G; Noor MY; Lovell NH; Ambikaizrajah E; Farrell G; Peng GD
    Opt Lett; 2013 Sep; 38(17):3359-62. PubMed ID: 23988957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers.
    Elsmann T; Lorenz A; Yazd NS; Habisreuther T; Dellith J; Schwuchow A; Bierlich J; Schuster K; Rothhardt M; Kido L; Bartelt H
    Opt Express; 2014 Nov; 22(22):26825-33. PubMed ID: 25401829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry.
    Ye F; Chen T; Xu D; Chen KP; Qi B; Qian L
    Appl Opt; 2010 Sep; 49(26):4898-905. PubMed ID: 20830178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers.
    Liu N; Li Y; Wang Y; Wang H; Liang W; Lu P
    Opt Express; 2011 Jul; 19(15):13880-91. PubMed ID: 21934749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature compensated fiber optic anemometer based on graphene-coated elliptical core micro-fiber Bragg grating.
    Gao R; Lu D
    Opt Express; 2019 Nov; 27(23):34011-34021. PubMed ID: 31878458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast thermal regeneration of fiber Bragg gratings.
    Bueno A; Kinet D; Mégret P; Caucheteur C
    Opt Lett; 2013 Oct; 38(20):4178-81. PubMed ID: 24321953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical flow sensor based on the thermal time-of-flight measurement.
    Hribar J; Donlagic D
    Opt Express; 2021 Mar; 29(6):8846-8860. PubMed ID: 33820326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Micro-Wire Flow-Velocity Sensor.
    Njegovec M; Pevec S; Donlagic D
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration.
    Lindner E; Canning J; Chojetzki C; Brückner S; Becker M; Rothhardt M; Bartelt H
    Appl Opt; 2011 Jun; 50(17):2519-22. PubMed ID: 21673753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain.
    Dennison CR; Wild PM
    Appl Opt; 2012 Mar; 51(9):1188-97. PubMed ID: 22441461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro.
    Alqarni SA; Willmore WG; Albert J; Smelser CW
    Appl Opt; 2021 Mar; 60(8):2400-2411. PubMed ID: 33690341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron-Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications.
    Tu Y; Ye L; Zhou SP; Tu ST
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28241465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.