These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24978795)

  • 1. Discriminating the role of sample length in thermal lensing of solids.
    Rodrigues TP; Zanuto VS; Cruz RA; Catunda T; Baesso ML; Astrath NG; Malacarne LC
    Opt Lett; 2014 Jul; 39(13):4013-6. PubMed ID: 24978795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser.
    Shang J; Zhu X; Zhu G
    Appl Opt; 2011 Nov; 50(32):6103-20. PubMed ID: 22083383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Experimental Investigation of Sample-Fluid Heat Coupling Effect in Thermal Lens Technique.
    Lukasievicz GVB; Herculano LS; Sehn E; Belançon MP; Bialkowski SE; Capeloto OA; Astrath NGC; Malacarne LC
    Appl Spectrosc; 2020 Oct; 74(10):1274-1279. PubMed ID: 32672058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical model of thermal effect and optical path difference in end-pumped Yb:YAG thin disk laser.
    Zhu G; Zhu X; Wang M; Feng Y; Zhu C
    Appl Opt; 2014 Oct; 53(29):6756-64. PubMed ID: 25322379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the population lens effect in thermal lens spectrometry.
    Silva JR; Malacarne LC; Baesso ML; Lima SM; Andrade LH; Jacinto C; Hehlen MP; Astrath NG
    Opt Lett; 2013 Feb; 38(4):422-4. PubMed ID: 23455089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal lensing analysis of TGG and its effect on beam quality.
    Jalali AA; Rybarsyk J; Rogers E
    Opt Express; 2013 Jun; 21(11):13741-7. PubMed ID: 23736627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical model of optical path difference in an end-pumped Yb:YAG thin-disk laser with nonuniform pumping light.
    Zhu G; Zhu X; Dai Z; Wang Z; Zhu C
    Appl Opt; 2015 Apr; 54(10):3024-31. PubMed ID: 25967218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Lensing in a Nd:YAG Laser Rod.
    Koechner W
    Appl Opt; 1970 Nov; 9(11):2548-53. PubMed ID: 20094304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-lens effect in kW-class thin-disk lasers.
    Diebold A; Saltarelli F; Graumann IJ; Saraceno CJ; Phillips CR; Keller U
    Opt Express; 2018 May; 26(10):12648-12659. PubMed ID: 29801303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian beam photothermal single particle microscopy.
    Selmke M; Braun M; Cichos F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2237-41. PubMed ID: 23201674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of a high power optical trapping setup free from thermal lensing effects.
    Simonelli C; Neri E; Ciamei A; Goti I; Inguscio M; Trenkwalder A; Zaccanti M
    Opt Express; 2019 Sep; 27(19):27215-27228. PubMed ID: 31674587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnification in excess of 100-times of the microscopic photothermal lensing signal from solute molecules by two-color excitation with continuous-wave lasers.
    Harata A; Fukushima K; Hatano Y
    Anal Sci; 2002 Dec; 18(12):1367-73. PubMed ID: 12502091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive beam shaping by controlled thermal lensing in optical elements.
    Arain MA; Quetschke V; Gleason J; Williams LF; Rakhmanov M; Lee J; Cruz RJ; Mueller G; Tanner DB; Reitze DH
    Appl Opt; 2007 Apr; 46(12):2153-65. PubMed ID: 17415383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback control of thermal lensing in a high optical power cavity.
    Fan Y; Zhao C; Degallaix J; Ju L; Blair DG; Slagmolen BJ; Hosken DJ; Brooks AF; Veitch PJ; Munch J
    Rev Sci Instrum; 2008 Oct; 79(10):104501. PubMed ID: 19044736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion, thermal diffusion, and Soret coefficients and optical contrast factors of the binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene.
    Gebhardt M; Köhler W; Mialdun A; Yasnou V; Shevtsova V
    J Chem Phys; 2013 Mar; 138(11):114503. PubMed ID: 23534645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of thermal diffusivities of silver nanoparticle colloidal suspensions by means of a frequency-resolved thermal lensing approach.
    Rodriguez L; Cárdenas-García JF; Vera CC
    Opt Lett; 2014 Jun; 39(12):3406-9. PubMed ID: 24978497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.