These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24978956)

  • 1. Compressive sensing in a photonic link with optical integration.
    Chen Y; Yu X; Chi H; Jin X; Zhang X; Zheng S; Galili M
    Opt Lett; 2014 Apr; 39(8):2222-4. PubMed ID: 24978956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of compressive sensing with optical mixing using a spatial light modulator.
    Zhu Z; Chi H; Zheng S; Jin T; Jin X; Zhang X
    Appl Opt; 2015 Mar; 54(8):1894-9. PubMed ID: 25968363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonics-enabled compressive sensing with spectral encoding using an incoherent broadband source.
    Zhu Z; Chi H; Jin T; Zheng S; Yu X; Jin X; Zhang X
    Opt Lett; 2018 Jan; 43(2):330-333. PubMed ID: 29328274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic compressive sensing of sparse radio frequency signals with a single dual-electrode Mach-Zehnder modulator.
    Yang B; Yang S; Cao Z; Ou J; Zhai Y; Chi H
    Opt Lett; 2020 Oct; 45(20):5708-5711. PubMed ID: 33057265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic-assisted multi-channel compressive sampling based on effective time delay pattern.
    Liang Y; Chen M; Chen H; Lei C; Li P; Xie S
    Opt Express; 2013 Nov; 21(22):25700-7. PubMed ID: 24216795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave spectrum sensing based on photonic time stretch and compressive sampling.
    Chi H; Chen Y; Mei Y; Jin X; Zheng S; Zhang X
    Opt Lett; 2013 Jan; 38(2):136-8. PubMed ID: 23454940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive sensing based on optical mixing using a spectral shaper with bipolar coding.
    Chi H; Zhou H; Yang S; Ou J; Zhai Y; Yang B
    Opt Express; 2021 May; 29(11):16422-16431. PubMed ID: 34154205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband sparse signal acquisition with ultrahigh sampling compression ratio based on continuous-time photonic time stretch and photonic compressive sampling.
    Yang B; Xu Q; Yang S; Chi H
    Appl Opt; 2022 Feb; 61(6):1344-1348. PubMed ID: 35201015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths.
    Wang W; Yang H; Tang P; Zhao C; Gao J
    Opt Express; 2013 May; 21(9):11215-26. PubMed ID: 23669979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.
    Tang C; Yu J; Li X; Chi N; Xiao J; Tian Y; Zhang J
    Opt Express; 2014 Jan; 22(1):239-45. PubMed ID: 24514984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive optical interferometry under structural constraints.
    Mardani D; Kondakci HE; Martin L; Abouraddy AF; Atia GK
    Opt Express; 2018 Mar; 26(5):5225-5239. PubMed ID: 29529728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave spectral analysis based on photonic compressive sampling with random demodulation.
    Chi H; Mei Y; Chen Y; Wang D; Zheng S; Jin X; Zhang X
    Opt Lett; 2012 Nov; 37(22):4636-8. PubMed ID: 23164863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for 100-fold increase in the FSR of optical recirculating delay line filters using a time compression unit.
    Nguyen TA; Chan EH; Minasian RA
    Opt Express; 2012 Oct; 20(21):23570-81. PubMed ID: 23188320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings.
    Shi W; Veerasubramanian V; Patel D; Plant DV
    Opt Lett; 2014 Feb; 39(3):701-3. PubMed ID: 24487903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical analog-to-digital conversion scheme based on Sagnac loop and balanced receivers.
    Xu K; Niu J; Dai Y; Sun X; Dai J; Wu J; Lin J
    Appl Opt; 2011 May; 50(14):1995-2000. PubMed ID: 21556099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive sensing-based channel bandwidth improvement in optical wireless orthogonal frequency division multiplexing link using visible light emitting diode.
    Won YY; Yoon SM
    Opt Express; 2014 Aug; 22(17):19990-9. PubMed ID: 25321208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic distributed compressive sampling of multi-node wideband sparse radio frequency signals.
    Yang B; Liu Z; Zhang Y; Dai W; Zhai Y; Yang S; Chi H
    Opt Express; 2023 Dec; 31(26):42878-42886. PubMed ID: 38178396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser.
    Carpintero G; Rouvalis E; Ławniczuk K; Fice M; Renaud CC; Leijtens XJ; Bente EA; Chitoui M; Van Dijk F; Seeds AJ
    Opt Lett; 2012 Sep; 37(17):3657-9. PubMed ID: 22940981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.
    Shen G; Tian H; Ji Y
    Appl Opt; 2013 Feb; 52(6):1218-25. PubMed ID: 23434992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive sensing of sparse radio frequency signals using optical mixing.
    Valley GC; Sefler GA; Shaw TJ
    Opt Lett; 2012 Nov; 37(22):4675-7. PubMed ID: 23164876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.