These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24978999)

  • 1. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.
    Wang A; Liu W; Tang J; Chen SL; Dong P
    Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; Léonard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution.
    Lee S; Lee Y; Kim DH; Moon JH
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12526-32. PubMed ID: 24266769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Synthesis of Inverse Opal TiO
    Liu S; Zhou L; Zhang J; Lei J
    Chem Asian J; 2019 Jan; 14(2):322-327. PubMed ID: 30507065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation.
    Wang H; Cheng Y; Zhu J; Zhang L
    Chempluschem; 2024 Jul; 89(7):e202400002. PubMed ID: 38527947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO
    Zhang Y; Li K; Su F; Cai Z; Liu J; Wu X; He H; Yin Z; Wang L; Wang B; Tian Y; Luo D; Sun XW; Liu YJ
    Opt Express; 2019 May; 27(11):15391-15398. PubMed ID: 31163736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Order in the Amplification of Light-Energy Conversion in a Dye-Sensitized Solar Cell Coupled to a Photonic Crystal.
    Fayad R; Halaoui L
    Chemphyschem; 2016 Jan; 17(2):260-9. PubMed ID: 26643111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure.
    Kubo S; Gu ZZ; Takahashi K; Fujishima A; Segawa H; Sato O
    J Am Chem Soc; 2004 Jul; 126(26):8314-9. PubMed ID: 15225074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.
    Lee JW; Moon JH
    Nanoscale; 2015 Mar; 7(12):5164-8. PubMed ID: 25634556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor.
    Li J; Zhao X; Wei H; Gu ZZ; Lu Z
    Anal Chim Acta; 2008 Sep; 625(1):63-9. PubMed ID: 18721541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary inverse opal system for convenient and reversible photonic bandgap tuning.
    Liu ZF; Ding T; Zhang G; Song K; Clays K; Tung CH
    Langmuir; 2008 Sep; 24(18):10519-23. PubMed ID: 18717578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrocatalytic degradation of rhodamine B on TiO₂ photonic crystals.
    Zheng X; Li D; Li X; Yu L; Wang P; Zhang X; Fang J; Shao Y; Zheng Y
    Phys Chem Chem Phys; 2014 Aug; 16(29):15299-306. PubMed ID: 24942099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-impermeable inverse opals with invariant photonic bandgap.
    Kang H; Lee JS; Chang WS; Kim SH
    Adv Mater; 2015 Feb; 27(7):1282-7. PubMed ID: 25492694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO
    Riedel M; Lisdat F
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):267-277. PubMed ID: 29220151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse opal photonic crystal of chalcogenide glass by solution processing.
    Kohoutek T; Orava J; Sawada T; Fudouzi H
    J Colloid Interface Sci; 2011 Jan; 353(2):454-8. PubMed ID: 21035816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.