These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24978999)

  • 21. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition.
    Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A
    J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals.
    Yang Z; Zhu K; Song Z; Zhou D; Yin Z; Qiu J
    Appl Opt; 2011 Jan; 50(3):287-90. PubMed ID: 21263723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.
    Kim HN; Yoo H; Moon JH
    Nanoscale; 2013 May; 5(10):4200-4. PubMed ID: 23536037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centrifugation-induced water-tunable photonic colloidal crystals with narrow diffraction bandwidth and highly sensitive detection of SCN-.
    Ma C; Jiang Y; Yang X; Wang C; Li H; Dong F; Yang B; Yu K; Lin Q
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1990-6. PubMed ID: 23448168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size Effects in Optical and Magneto-Optical Response of Opal-Cobalt Heterostructures.
    Kolmychek IA; Lazareva KA; Mamonov EA; Skorokhodov EV; Sapozhnikov MV; Golubev VG; Murzina TV
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells.
    Lee SH; Abrams NM; Hoertz PG; Barber GD; Halaoui LI; Mallouk TE
    J Phys Chem B; 2008 Nov; 112(46):14415-21. PubMed ID: 18925776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.
    Ryu SH; Gim MJ; Lee W; Choi SW; Yoon DK
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3186-3191. PubMed ID: 28029761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO
    Waterhouse GIN; Chen WT; Chan A; Sun-Waterhouse D
    ACS Omega; 2018 Aug; 3(8):9658-9674. PubMed ID: 31459096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups.
    Maldovan M; Ullal CK; Carter WC; Thomas EL
    Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemically Deposited MoS
    Chiu SK; Chen PY; Louh RF
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions.
    Hwang J; Song MH; Park B; Nishimura S; Toyooka T; Wu JW; Takanishi Y; Ishikawa K; Takezoe H
    Nat Mater; 2005 May; 4(5):383-7. PubMed ID: 15852019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monodisperse TiO
    Xia H; Wu S; Su X; Zhang S
    Chem Asian J; 2017 Jan; 12(1):95-100. PubMed ID: 27860398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.
    Xu Q; Mahpeykar SM; Burgess IB; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20120-20127. PubMed ID: 29763285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of photonic crystals made of air spheres in titania.
    Wijnhoven JEGJ; Vos WL
    Science; 1998 Aug; 281(5378):802-4. PubMed ID: 9694646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lotus Seedpod Inspiration: Particle-Nested Double-Inverse Opal Films with Fast and Reversible Structural Color Switching for Information Security.
    Zhou C; Qi Y; Zhang S; Niu W; Wu S; Ma W; Tang B
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26384-26393. PubMed ID: 34038074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates.
    Yeo SJ; Kang H; Kim YH; Han S; Yoo PJ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2107-15. PubMed ID: 22439630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap.
    Panajotov K; Dems M
    Opt Lett; 2010 Mar; 35(6):829-31. PubMed ID: 20237613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.