These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24978999)

  • 41. Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals.
    Zhou YS; Wang XH; Gu BY; Wang FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):017601. PubMed ID: 16090152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Internal structure of nanoporous TiO2/polyion thin films prepared by layer-by-layer deposition.
    Kniprath R; Duhm S; Glowatzki H; Koch N; Rogaschewski S; Rabe JP; Kirstein S
    Langmuir; 2007 Sep; 23(19):9860-5. PubMed ID: 17696454
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment.
    Shin JH; Moon JH
    Langmuir; 2011 May; 27(10):6311-5. PubMed ID: 21488619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and photonic band calculations of NCP face-centered cubic photonic crystals of TiO2 hollow spheres.
    Zhu YZ; Cao YL; Li ZH; Ding J; Liu JS; Chi YB
    J Colloid Interface Sci; 2007 Feb; 306(1):133-6. PubMed ID: 17097102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals.
    Tuyen le D; Liu AC; Huang CC; Tsai PC; Lin JH; Wu CW; Chau LK; Yang TS; Minh le Q; Kan HC; Hsu CC
    Opt Express; 2012 Dec; 20(28):29266-75. PubMed ID: 23388752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The diversity of three-dimensional photonic crystals.
    Cersonsky RK; Antonaglia J; Dice BD; Glotzer SC
    Nat Commun; 2021 May; 12(1):2543. PubMed ID: 33953178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optically Active Inverse Opal Photonic Crystals.
    Hou K; Ali W; Lv J; Guo J; Shi L; Han B; Wang X; Tang Z
    J Am Chem Soc; 2018 Dec; 140(48):16446-16449. PubMed ID: 30452862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials.
    Lu G; Zhou X; Zhao Y; Zhang K; Zhou H; Li J; Diao C; Liu F; Wu A; Du G
    Opt Express; 2021 Sep; 29(20):31915-31923. PubMed ID: 34615273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetophotonic response of three-dimensional opals.
    Caicedo JM; Pascu O; López-García M; Canalejas V; Blanco A; López C; Fontcuberta J; Roig A; Herranz G
    ACS Nano; 2011 Apr; 5(4):2957-63. PubMed ID: 21401054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Positive and negative TiO2 micropatterns on organic polymer substrates.
    Yang P; Yang M; Zou S; Xie J; Yang W
    J Am Chem Soc; 2007 Feb; 129(6):1541-52. PubMed ID: 17243675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting.
    Zhang Z; Yang X; Hedhili MN; Ahmed E; Shi L; Wang P
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):691-6. PubMed ID: 24328231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice.
    Li CZ; Liu SB; Kong XK; Bian BR; Zhang XY
    Appl Opt; 2011 Jun; 50(16):2370-5. PubMed ID: 21629315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The influential factors of MOCVD growth of InP in opals].
    Tan CH; Fan GH; Huang XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2763-7. PubMed ID: 19248478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photonic amorphous diamond structure with a 3D photonic band gap.
    Edagawa K; Kanoko S; Notomi M
    Phys Rev Lett; 2008 Jan; 100(1):013901. PubMed ID: 18232763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser damage resistance of polystyrene opal photonic crystals.
    Pan L; Xu H; Lv R; Qiu J; Zhao J; Li Y
    Sci Rep; 2018 Mar; 8(1):4523. PubMed ID: 29540856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals.
    Chen JI; Loso E; Ebrahim N; Ozin GA
    J Am Chem Soc; 2008 Apr; 130(16):5420-1. PubMed ID: 18355051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemosorption-related shift of a photonic bandgap in photoconductive ZnO inverse opal.
    Khunsin W; Romanov SG; Scharrer M; Aagesen LK; Chang RP; Sotomayor Torres CM
    Opt Lett; 2008 Mar; 33(5):461-3. PubMed ID: 18311292
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis.
    Chen H; Chen S; Quan X; Zhang Y
    Environ Sci Technol; 2010 Jan; 44(1):451-5. PubMed ID: 19994850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.
    Man W; Florescu M; Williamson EP; He Y; Hashemizad SR; Leung BY; Liner DR; Torquato S; Chaikin PM; Steinhardt PJ
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):15886-91. PubMed ID: 24043795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.