BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24979017)

  • 1. In vivo OCT microangiography of rodent iris.
    Choi WJ; Zhi Z; Wang RK
    Opt Lett; 2014 Apr; 39(8):2455-8. PubMed ID: 24979017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina.
    An L; Shen TT; Wang RK
    J Biomed Opt; 2011 Oct; 16(10):106013. PubMed ID: 22029360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects.
    An L; Johnstone M; Wang RK
    J Biomed Opt; 2012 Nov; 17(11):116018. PubMed ID: 23128971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive imaging of retinal morphology and microvasculature in obese mice using optical coherence tomography and optical microangiography.
    Zhi Z; Chao JR; Wietecha T; Hudkins KL; Alpers CE; Wang RK
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):1024-30. PubMed ID: 24458155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography.
    Qin J; Jiang J; An L; Gareau D; Wang RK
    Lasers Surg Med; 2011 Feb; 43(2):122-9. PubMed ID: 21384393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask.
    Choi WJ; Reif R; Yousefi S; Wang RK
    J Biomed Opt; 2014 Mar; 19(3):36010. PubMed ID: 24623159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography.
    Subhash HM; Davila V; Sun H; Nguyen-Huynh AT; Shi X; Nuttall AL; Wang RK
    IEEE Trans Med Imaging; 2011 Feb; 30(2):224-30. PubMed ID: 20813632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue.
    Choi WJ; Wang H; Wang RK
    J Biomed Opt; 2014 May; 19(5):056003. PubMed ID: 24810259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study.
    Choi WJ; Pepple KL; Zhi Z; Wang RK
    J Biomed Opt; 2015 Jan; 20(1):016015. PubMed ID: 25594627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo.
    Jung Y; Zhi Z; Wang RK
    J Biomed Opt; 2010; 15(5):050501. PubMed ID: 21054073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye.
    Baumann B; Augustin M; Lichtenegger A; Harper D; Muck M; Eugui P; Wartak A; Pircher M; Hitzenberger C
    J Biomed Opt; 2018 Aug; 23(8):1-12. PubMed ID: 30168301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source.
    Zhi Z; Qin W; Wang J; Wei W; Wang RK
    Opt Lett; 2015 Apr; 40(8):1779-82. PubMed ID: 25872072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography.
    Rezaei KA; Zhang Q; Chen CL; Chao J; Wang RK
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1287-1295. PubMed ID: 28314954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking.
    Zhang Q; Huang Y; Zhang T; Kubach S; An L; Laron M; Sharma U; Wang RK
    J Biomed Opt; 2015 Jun; 20(6):066008. PubMed ID: 26102573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full range complex ultrahigh sensitive optical microangiography.
    An L; Wang RK
    Opt Lett; 2011 Mar; 36(6):831-3. PubMed ID: 21403699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography.
    Wei W; Choi WJ; Wang RK
    Lasers Med Sci; 2018 Jan; 33(1):123-134. PubMed ID: 29038969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric cutaneous microangiography of human skin
    Choi WJ; Wang RK
    Quantum Elec (Woodbury); 2014; 44(8):740. PubMed ID: 25635163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.