These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24979035)

  • 21. Entanglement generation using silicon photonic wire waveguide.
    Takesue H; Harada K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Tokura Y; Itabashi S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1814-8. PubMed ID: 20355579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement.
    Engin E; Bonneau D; Natarajan CM; Clark AS; Tanner MG; Hadfield RH; Dorenbos SN; Zwiller V; Ohira K; Suzuki N; Yoshida H; Iizuka N; Ezaki M; O'Brien JL; Thompson MG
    Opt Express; 2013 Nov; 21(23):27826-34. PubMed ID: 24514299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity.
    Suo J; Dong S; Zhang W; Huang Y; Peng J
    Opt Express; 2015 Feb; 23(4):3985-95. PubMed ID: 25836437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Configurable spatiotemporal properties in a photon-pair source based on spontaneous four-wave mixing with multiple transverse modes.
    Cruz-Delgado D; Monroy-Ruz J; Barragan AM; Ortiz-Ricardo E; Cruz-Ramirez H; Ramirez-Alarcon R; Garay-Palmett K; U'Ren AB
    Opt Lett; 2014 Jun; 39(12):3583-6. PubMed ID: 24978542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers.
    Dong S; Yu L; Zhang W; Wu J; Zhang W; You L; Huang Y
    Sci Rep; 2015 Mar; 5():9195. PubMed ID: 25779686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-Chip Group-IV Heisenberg-Limited Sagnac Interferometric Gyroscope at Room Temperature.
    De Leonardis F; Soref R; De Carlo M; Passaro VMN
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber-based telecom-band degenerate-frequency source of entangled photon pairs.
    Chen J; Lee KF; Liang C; Kumar P
    Opt Lett; 2006 Sep; 31(18):2798-800. PubMed ID: 16936896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of quantum light sources and four-wave mixing based on a reconfigurable silicon ring resonator.
    Wu C; Liu Y; Wang Y; Ding J; Zhu P; Xue S; Yu X; Zheng Q; Yu M; Huang A; Fu X; Qiang X; Deng M; Wu J; Xu P
    Opt Express; 2022 Mar; 30(6):9992-10010. PubMed ID: 35299412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of frequency degenerate twin beams in Rb85 vapor.
    Jia J; Du W; Chen JF; Yuan CH; Ou ZY; Zhang W
    Opt Lett; 2017 Oct; 42(19):4024-4027. PubMed ID: 28957188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs.
    Honjo T; Takesue H; Inoue K
    Opt Lett; 2007 May; 32(9):1165-7. PubMed ID: 17410270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber.
    Takesue H; Inoue K
    Opt Express; 2005 Oct; 13(20):7832-9. PubMed ID: 19498811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses.
    Zhang X; Jizan I; He J; Clark AS; Choi DY; Chae CJ; Eggleton BJ; Xiong C
    Opt Lett; 2015 Jun; 40(11):2489-92. PubMed ID: 26030539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-bin entangled photon pair generation from Si micro-ring resonator.
    Wakabayashi R; Fujiwara M; Yoshino K; Nambu Y; Sasaki M; Aoki T
    Opt Express; 2015 Jan; 23(2):1103-13. PubMed ID: 25835870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms.
    Cho YW; Park KK; Lee JC; Kim YH
    Phys Rev Lett; 2014 Aug; 113(6):063602. PubMed ID: 25148327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.
    Grassani D; Simbula A; Pirotta S; Galli M; Menotti M; Harris NC; Baehr-Jones T; Hochberg M; Galland C; Liscidini M; Bajoni D
    Sci Rep; 2016 Apr; 6():23564. PubMed ID: 27032688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chip-integrated visible-telecom photon pair sources for quantum communication.
    Lu X; Li Q; Westly DA; Moille G; Singh A; Anant V; Srinivasan K
    Nat Phys; 2019; 15():. PubMed ID: 31275426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-time entanglement generation in optical fibers under CW pumping.
    Dong S; Zhou Q; Zhang W; He Y; Zhang W; You L; Huang Y; Peng J
    Opt Express; 2014 Jan; 22(1):359-68. PubMed ID: 24514996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers.
    Jeong SH; Tanaka S; Akiyama T; Sekiguchi S; Tanaka Y; Morito K
    Opt Express; 2012 Nov; 20(23):26000-11. PubMed ID: 23187415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Practical system for the generation of pulsed quantum frequency combs.
    Roztocki P; Kues M; Reimer C; Wetzel B; Sciara S; Zhang Y; Cino A; Little BE; Chu ST; Moss DJ; Morandotti R
    Opt Express; 2017 Aug; 25(16):18940-18949. PubMed ID: 29041085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble.
    Srivathsan B; Gulati GK; Chng B; Maslennikov G; Matsukevich D; Kurtsiefer C
    Phys Rev Lett; 2013 Sep; 111(12):123602. PubMed ID: 24093260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.