BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24979205)

  • 1. Pyranopterin dithiolene distortions relevant to electron transfer in xanthine oxidase/dehydrogenase.
    Dong C; Yang J; Leimkühler S; Kirk ML
    Inorg Chem; 2014 Jul; 53(14):7077-9. PubMed ID: 24979205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes.
    Kirk ML; Lepluart J; Yang J
    J Inorg Biochem; 2022 Oct; 235():111907. PubMed ID: 35932756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.
    Gates C; Varnum H; Getty C; Loui N; Chen J; Kirk ML; Yang J; Nieter Burgmayer SJ
    Inorg Chem; 2022 Sep; 61(35):13728-13742. PubMed ID: 36000991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman studies on xanthine oxidase: observation of Mo(VI)-ligand vibrations.
    Maiti NC; Tomita T; Kitagawa T; Okamoto K; Nishino T
    J Biol Inorg Chem; 2003 Feb; 8(3):327-33. PubMed ID: 12589568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic isotope effects and electron transfer in the reduction of xanthine oxidoreductase with 4-hydroxypyrimidine. A comparison between oxidase and dehydrogenase forms.
    Harris CM; Massey V
    J Biol Chem; 1997 Sep; 272(36):22514-25. PubMed ID: 9278404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
    Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN
    J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molybdenum centers of xanthine oxidase and xanthine dehydrogenase. Determination of the spectral change associated with reduction from the Mo(VI) to the Mo(IV) state.
    Ryan MG; Ratnam K; Hille R
    J Biol Chem; 1995 Aug; 270(33):19209-12. PubMed ID: 7642590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.
    Rothery RA; Stein B; Solomonson M; Kirk ML; Weiner JH
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14773-8. PubMed ID: 22927383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthine oxidase-product complexes probe the importance of substrate/product orientation along the reaction coordinate.
    Yang J; Dong C; Kirk ML
    Dalton Trans; 2017 Oct; 46(39):13242-13250. PubMed ID: 28696463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
    Stein BW; Kirk ML
    J Biol Inorg Chem; 2015 Mar; 20(2):183-94. PubMed ID: 25425163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance-enhanced Raman scattering from the molybdenum center of xanthine oxidase.
    Oertling WA; Hille R
    J Biol Chem; 1990 Oct; 265(29):17446-50. PubMed ID: 2211638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
    Huber R; Hof P; Duarte RO; Moura JJ; Moura I; Liu MY; LeGall J; Hille R; Archer M; Romão MJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8846-51. PubMed ID: 8799115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase.
    Nishino T; Okamoto K
    J Inorg Biochem; 2000 Nov; 82(1-4):43-9. PubMed ID: 11132637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical systems modeling the d
    Young CG
    J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.
    Burgmayer SJN; Kirk ML
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.