These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 24979427)

  • 1. SoMIR framework for designing high-NDBP photonic crystal waveguides.
    Mirjalili SM
    Appl Opt; 2014 Jun; 53(18):3945-53. PubMed ID: 24979427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow light in an alternative row of ellipse-hole photonic crystal waveguide.
    Xu Y; Xiang L; Cassan E; Gao D; Zhang X
    Appl Opt; 2013 Feb; 52(6):1155-60. PubMed ID: 23434985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field characterization of planar photonic-crystal-waveguide structures.
    Bozhevolnyi SI; Volkov VS
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):757-69. PubMed ID: 15306492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-objective optimization framework for designing photonic crystal sensors.
    Safdari MJ; Mirjalili SM; Bianucci P; Zhang X
    Appl Opt; 2018 Mar; 57(8):1950-1957. PubMed ID: 29521980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow light with large group index-bandwidth product in ellipse-hole photonic crystal waveguides.
    Han X; Wang T; Tang J; Liu B; Wang B; He Y; Zhu Y
    Appl Opt; 2015 Feb; 54(6):1543-7. PubMed ID: 25968223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modulation of wideband slow light with continuous group index in polymer-filled photonic crystal waveguide.
    Yan C; Li C; Wan Y
    Appl Opt; 2017 Dec; 56(35):9749-9756. PubMed ID: 29240121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters.
    Mirjalili SM; Merikhi B; Mirjalili SZ; Zoghi M; Mirjalili S
    Appl Opt; 2017 Dec; 56(34):9444-9451. PubMed ID: 29216057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides.
    Jandieri V; Khomeriki R; Erni D
    Opt Express; 2018 Aug; 26(16):19845-19853. PubMed ID: 30119305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled-mode analysis of contra-directional coupling between two asymmetric photonic crystal waveguides.
    Jandieri V; Yasumoto K; Pistora J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):518-23. PubMed ID: 24690649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes.
    Long F; Tian H; Ji Y
    Appl Opt; 2010 Sep; 49(25):4808-13. PubMed ID: 20820224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the guiding bandwidth of photonic crystal waveguides on silicon-on-insulator.
    Atabaki AH; Hosseini ES; Momeni B; Adibi A
    Opt Lett; 2008 Nov; 33(22):2608-10. PubMed ID: 19015683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides.
    Liu B; Wang T; Tang J; Li X; Dong C; He Y
    Appl Opt; 2013 Dec; 52(34):8394-401. PubMed ID: 24513844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable topological slow-light in gyromagnetic photonic crystal waveguides with unified magnetic field.
    Li X; Li ZY; Liang W
    Opt Express; 2023 Aug; 31(18):29300-29311. PubMed ID: 37710733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing slow-light photonic crystal waveguides for four-wave mixing applications.
    Kanakis P; Kamalakis T; Sphicopoulos T
    Opt Lett; 2014 Feb; 39(4):884-7. PubMed ID: 24562232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals.
    Askari M; Momeni B; Reinke CM; Adibi A
    Appl Opt; 2011 Mar; 50(9):1266-71. PubMed ID: 21460998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides.
    Chien FS; Hsu Y; Hsieh W; Cheng S
    Opt Express; 2004 Mar; 12(6):1119-25. PubMed ID: 19474929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing photonic crystal waveguides for on-chip spectroscopic applications.
    Liapis AC; Shi Z; Boyd RW
    Opt Express; 2013 Apr; 21(8):10160-5. PubMed ID: 23609720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz modulator based on insulator-metal transition in photonic crystal waveguide.
    Fan F; Hou Y; Jiang ZW; Wang XH; Chang SJ
    Appl Opt; 2012 Jul; 51(20):4589-96. PubMed ID: 22781233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
    Suzuki K; Baba T
    Opt Express; 2010 Dec; 18(25):26675-85. PubMed ID: 21165018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.