These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24979441)

  • 1. Vascular contrast in narrow-band and white light imaging.
    Du Le VN; Wang Q; Gould T; Ramella-Roman JC; Pfefer TJ
    Appl Opt; 2014 Jun; 53(18):4061-71. PubMed ID: 24979441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo modeling of light-tissue interactions in narrow band imaging.
    Le du VN; Wang Q; Ramella-Roman JC; Pfefer TJ
    J Biomed Opt; 2013 Jan; 18(1):10504. PubMed ID: 23238421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes.
    Lo JY; Yu B; Fu HL; Bender JE; Palmer GM; Kuech TF; Ramanujam N
    Opt Express; 2009 Feb; 17(3):1372-84. PubMed ID: 19188966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.
    Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N
    J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light photon migration through myocardium in vivo.
    Gandjbakhche AH; Bonner RF; Arai AE; Balaban RS
    Am J Physiol; 1999 Aug; 277(2):H698-704. PubMed ID: 10444496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.
    Bell CS; Obstein KL; Valdastri P
    Artif Intell Med; 2013 Nov; 59(3):185-96. PubMed ID: 24188575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin parameters from diffuse reflectance data.
    Mourant JR; Marina OC; Hebert TM; Kaur G; Smith HO
    J Biomed Opt; 2014 Mar; 19(3):37004. PubMed ID: 24671524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions.
    Patwardhan SV; Dhawan AP; Relue PA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1227-36. PubMed ID: 16041986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.
    Duadi H; Fixler D; Popovtzer R
    J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.
    Chen P; Fernald B; Lin W
    Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep tissue multiphoton microscopy using longer wavelength excitation.
    Kobat D; Durst ME; Nishimura N; Wong AW; Schaffer CB; Xu C
    Opt Express; 2009 Aug; 17(16):13354-64. PubMed ID: 19654740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative study on appearance of microvessels in spectral endoscopic imaging.
    Yamaguchi H; Saito T; Shiraishi Y; Arai F; Morimoto Y; Yuasa A
    J Biomed Opt; 2015 Mar; 20(3):036005. PubMed ID: 25751029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error analysis of finite-spectral-linewidth illumination in optical oximetry systems.
    Hollmann JL; DiMarzio CA
    Adv Exp Med Biol; 2008; 614():209-15. PubMed ID: 18290331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appearance of enhanced tissue features in narrow-band endoscopic imaging.
    Gono K; Obi T; Yamaguchi M; Ohyama N; Machida H; Sano Y; Yoshida S; Hamamoto Y; Endo T
    J Biomed Opt; 2004; 9(3):568-77. PubMed ID: 15189095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.