These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24979750)

  • 1. Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.
    Blum Y; Vejdani HR; Birn-Jeffery AV; Hubicki CM; Hurst JW; Daley MA
    PLoS One; 2014; 9(6):e100399. PubMed ID: 24979750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.
    Birn-Jeffery AV; Hubicki CM; Blum Y; Renjewski D; Hurst JW; Daley MA
    J Exp Biol; 2014 Nov; 217(Pt 21):3786-96. PubMed ID: 25355848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion.
    Daley MA
    Integr Comp Biol; 2018 Nov; 58(5):884-893. PubMed ID: 29897448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl.
    Daley MA; Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1580-91. PubMed ID: 21502128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl.
    Daley MA; Voloshina A; Biewener AA
    J Physiol; 2009 Jun; 587(Pt 11):2693-707. PubMed ID: 19359369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Running over rough terrain reveals limb control for intrinsic stability.
    Daley MA; Biewener AA
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15681-6. PubMed ID: 17032779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).
    Rubenson J; Marsh RL
    J Appl Physiol (1985); 2009 May; 106(5):1618-30. PubMed ID: 19228989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.
    Daley MA; Felix G; Biewener AA
    J Exp Biol; 2007 Feb; 210(Pt 3):383-94. PubMed ID: 17234607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion?
    Gordon JC; Rankin JW; Daley MA
    J Exp Biol; 2015 Oct; 218(Pt 19):3010-22. PubMed ID: 26254324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birds achieve high robustness in uneven terrain through active control of landing conditions.
    Birn-Jeffery AV; Daley MA
    J Exp Biol; 2012 Jun; 215(Pt 12):2117-27. PubMed ID: 22623200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).
    Carr JA; Ellerby DJ; Marsh RL
    J Exp Biol; 2011 Oct; 214(Pt 20):3405-13. PubMed ID: 21957104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control.
    Biewener AA; Daley MA
    J Exp Biol; 2007 Sep; 210(Pt 17):2949-60. PubMed ID: 17704070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small vertebrates running on uneven terrain: a biomechanical study of two differently specialised lacertid lizards.
    Druelle F; Goyens J; Vasilopoulou-Kampitsi M; Aerts P
    Sci Rep; 2019 Nov; 9(1):16858. PubMed ID: 31727966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.
    Schwaner MJ; Nishikawa KC; Daley MA
    Integr Comp Biol; 2022 May; ():. PubMed ID: 35612979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical function of linked muscles in the guinea fowl hind limb.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2010 Jul; 213(Pt 13):2201-8. PubMed ID: 20543118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swing-leg retraction: a simple control model for stable running.
    Seyfarth A; Geyer H; Herr H
    J Exp Biol; 2003 Aug; 206(Pt 15):2547-55. PubMed ID: 12819262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.