These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24980029)

  • 41. Hybrid process of BAC and sMBR for treating polluted raw water.
    Tian JY; Chen ZL; Yang YL; Liang H; Nan J; Wang ZZ; Li GB
    Bioresour Technol; 2009 Dec; 100(24):6243-9. PubMed ID: 19682892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced chemical oxygen demand removal and flux reduction in pulp and paper wastewater treatment using laccase-polymerized membrane filtration.
    Ko CH; Fan C
    J Hazard Mater; 2010 Sep; 181(1-3):763-70. PubMed ID: 20638964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): effects of activated carbon addition and biogas-sparging time.
    Vyrides I; Stuckey DC
    Water Res; 2009 Mar; 43(4):933-42. PubMed ID: 19147169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.
    Pramanik BK; Roddick FA; Fan L
    Environ Technol; 2018 Sep; 39(17):2243-2250. PubMed ID: 28689477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimized removal of dissolved organic carbon and trace organic contaminants during combined ozonation and artificial groundwater recharge.
    Hübner U; Miehe U; Jekel M
    Water Res; 2012 Nov; 46(18):6059-68. PubMed ID: 23014565
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biofiltration of a mixture of volatile organic compounds on granular activated carbon.
    Aizpuru A; Malhautier L; Roux JC; Fanlo JL
    Biotechnol Bioeng; 2003 Aug; 83(4):479-88. PubMed ID: 12800142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products.
    Lloret L; Eibes G; Moreira MT; Feijoo G; Lema JM
    Environ Sci Technol; 2013 May; 47(9):4536-43. PubMed ID: 23544499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.
    Lin H; Wang F; Ding L; Hong H; Chen J; Lu X
    J Hazard Mater; 2011 Sep; 192(3):1509-14. PubMed ID: 21794980
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strategies to enhance the biodegradation of toxic compounds using discontinuous processes.
    Buitrón G; Soto G; Vite G; Moreno J
    Water Sci Technol; 2001; 43(3):283-90. PubMed ID: 11381918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.
    Buitrón G; Moreno-Andrade I; Arellano-Badillo VM; Ramírez-Amaya V
    Water Sci Technol; 2014; 69(8):1759-67. PubMed ID: 24759539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of herbicide (persistent pollutant) removal mechanisms through hybrid membrane bioreactors.
    Navaratna D; Shu L; Jegatheesan V
    Bioresour Technol; 2016 Jan; 200():795-803. PubMed ID: 26584228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-stage biofilm-MBR for nitrogen removal and enhanced membrane performance.
    Sun C; Leiknes T
    Water Sci Technol; 2012; 66(3):588-93. PubMed ID: 22744690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.
    Radjenovic J; Bagastyo A; Rozendal RA; Mu Y; Keller J; Rabaey K
    Water Res; 2011 Feb; 45(4):1579-86. PubMed ID: 21167547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.
    Schoutteten KVKM; Hennebel T; Dheere E; Bertelkamp C; De Ridder DJ; Maes S; Chys M; Van Hulle SWH; Vanden Bussche J; Vanhaecke L; Verliefde ARD
    Chemosphere; 2016 Dec; 165():191-201. PubMed ID: 27654222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal and fate of micropollutants in a sponge-based moving bed bioreactor.
    Luo Y; Guo W; Ngo HH; Nghiem LD; Hai FI; Kang J; Xia S; Zhang Z; Price WE
    Bioresour Technol; 2014 May; 159():311-9. PubMed ID: 24658104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BTX removal from polluted water through bioleaching processes.
    Farhadian M; Duchez D; Vachelard C; Larroche C
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):295-306. PubMed ID: 18427740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.