These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24980082)
1. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies. Estracanholli EA; Praça FS; Cintra AB; Pierre MB; Lara MG AAPS PharmSciTech; 2014 Dec; 15(6):1468-75. PubMed ID: 24980082 [TBL] [Abstract][Full Text] [Related]
2. Liquid Crystalline Systems Based on Glyceryl Monooleate and Penetration Enhancers for Skin Delivery of Celecoxib: Characterization, In Vitro Drug Release, and In Vivo Studies. Dante MCL; Borgheti-Cardoso LN; Fantini MCA; Praça FSG; Medina WSG; Pierre MBR; Lara MG J Pharm Sci; 2018 Mar; 107(3):870-878. PubMed ID: 29108729 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo influence of penetration enhancers in the topical application of celecoxib. Quiñones OG; Mata dos Santos HA; Kibwila DM; Leitão A; dos Santos Pyrrho A; Pádula Md; Rosas EC; Lara MG; Pierre MB Drug Dev Ind Pharm; 2014 Sep; 40(9):1180-9. PubMed ID: 23826859 [TBL] [Abstract][Full Text] [Related]
4. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Baboota S; Shakeel F; Ahuja A; Ali J; Shafiq S Acta Pharm; 2007 Sep; 57(3):315-32. PubMed ID: 17878111 [TBL] [Abstract][Full Text] [Related]
5. In situ intestinal permeability and in vivo oral bioavailability of celecoxib in supersaturating self-emulsifying drug delivery system. Song WH; Yeom DW; Lee DH; Lee KM; Yoo HJ; Chae BR; Song SH; Choi YW Arch Pharm Res; 2014 May; 37(5):626-35. PubMed ID: 23852645 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical performances of indomethacin in cholesteryl cetyl carbonate liquid crystal as a transdermal dosage. Aeinleng N; Songkro S; Noipha K; Srichana T AAPS PharmSciTech; 2012 Jun; 13(2):513-21. PubMed ID: 22430922 [TBL] [Abstract][Full Text] [Related]
7. Nanoemulsion: a promising tool for solubility and dissolution enhancement of celecoxib. Shakeel F; Faisal MS Pharm Dev Technol; 2010; 15(1):53-6. PubMed ID: 19552546 [TBL] [Abstract][Full Text] [Related]
8. In Vitro and In Vivo Evaluation of DMSO and Azone as Penetration Enhancers for Cutaneous Application of Celecoxib. Senna TD; Mata Dos Santos HA; Kibwila DM; Leitao AC; Santos Pyrrho AD; de Padula M; Rosas EC; Padua TA; Lara MG; Riemma Pierre MB Curr Drug Deliv; 2017; 14(7):992-1004. PubMed ID: 28124617 [TBL] [Abstract][Full Text] [Related]
9. Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Subramanian N; Ghosal SK; Moulik SP Drug Dev Ind Pharm; 2005 May; 31(4-5):405-16. PubMed ID: 16093206 [TBL] [Abstract][Full Text] [Related]
10. Monoolein liquid crystalline phases for topical delivery of crocetin. Esposito E; Carducci F; Mariani P; Huang N; Simelière F; Cortesi R; Romeo G; Puglia C Colloids Surf B Biointerfaces; 2018 Nov; 171():67-74. PubMed ID: 30015140 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Lopes LB; Speretta FF; Bentley MV Eur J Pharm Sci; 2007 Nov; 32(3):209-15. PubMed ID: 17900879 [TBL] [Abstract][Full Text] [Related]
12. Copaiba Oil: Chemical Composition and Influence on In-vitro Cutaneous Permeability of Celecoxib. Quinones OG; Abranches RP; Nakamura MJ; de Souza Ramos MF; Riemma Pierre MB Curr Drug Deliv; 2018; 15(3):357-366. PubMed ID: 28847273 [TBL] [Abstract][Full Text] [Related]
13. HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. Cohen-Avrahami M; Shames AI; Ottaviani MF; Aserin A; Garti N J Phys Chem B; 2014 Jun; 118(23):6277-87. PubMed ID: 24798650 [TBL] [Abstract][Full Text] [Related]
14. Effect of non-phospholipid-based cationic and phospholipid-based anionic nanosized emulsions on skin retention and anti-inflammatory activity of celecoxib. Tamilvanan S; Baskar R Pharm Dev Technol; 2013; 18(4):761-71. PubMed ID: 23668371 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. Liu Y; Sun C; Hao Y; Jiang T; Zheng L; Wang S J Pharm Pharm Sci; 2010; 13(4):589-606. PubMed ID: 21486533 [TBL] [Abstract][Full Text] [Related]
16. Formulation of microemulsion systems for dermal delivery of silymarin. Panapisal V; Charoensri S; Tantituvanont A AAPS PharmSciTech; 2012 Jun; 13(2):389-99. PubMed ID: 22350738 [TBL] [Abstract][Full Text] [Related]
17. Multivesicular liposomes bearing celecoxib-beta-cyclodextrin complex for transdermal delivery. Jain SK; Gupta Y; Jain A; Bhola M Drug Deliv; 2007 Aug; 14(6):327-35. PubMed ID: 17701522 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Cubic Liquid Crystalline Nanoparticles for Transdermal Delivery of Paeonol. Li JC; Zhu N; Zhu JX; Zhang WJ; Zhang HM; Wang QQ; Wu XX; Wang X; Zhang J; Hao JF Med Sci Monit; 2015 Oct; 21():3298-310. PubMed ID: 26517086 [TBL] [Abstract][Full Text] [Related]
19. Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel. Hosmer JM; Shin SH; Nornoo A; Zheng H; Lopes LB J Pharm Sci; 2011 Apr; 100(4):1444-55. PubMed ID: 20957759 [TBL] [Abstract][Full Text] [Related]
20. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation. Song WH; Park JH; Yeom DW; Ahn BK; Lee KM; Lee SG; Woo HS; Choi YW Arch Pharm Res; 2013 Jan; 36(1):69-78. PubMed ID: 23325487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]