BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24980861)

  • 21. Isolation and characterization of a novel antifungal peptide from Aspergillus niger.
    Gun Lee D; Shin SY; Maeng CY; Jin ZZ; Kim KL; Hahm KS
    Biochem Biophys Res Commun; 1999 Oct; 263(3):646-51. PubMed ID: 10512732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antifungal activity from 14-helical beta-peptides.
    Karlsson AJ; Pomerantz WC; Weisblum B; Gellman SH; Palecek SP
    J Am Chem Soc; 2006 Oct; 128(39):12630-1. PubMed ID: 17002340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryptococcus and Trichosporon spp. are susceptible in vitro to branched histidine- and lysine-rich peptides (BHKPs).
    Verwer PE; Woodle MC; Boekhout T; Hagen F; Bakker-Woudenberg IA; van de Sande WW
    J Antimicrob Chemother; 2011 Jul; 66(7):1649-52. PubMed ID: 21543360
    [No Abstract]   [Full Text] [Related]  

  • 24. Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency.
    Wang S; Rao P; Ye X
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):79-86. PubMed ID: 18841359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pleurostrin, an antifungal peptide from the oyster mushroom.
    Chu KT; Xia L; Ng TB
    Peptides; 2005 Nov; 26(11):2098-103. PubMed ID: 15941607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits.
    López-García B; González-Candelas L; Pérez-Payá E; Marcos JF
    Mol Plant Microbe Interact; 2000 Aug; 13(8):837-46. PubMed ID: 10939255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the structural stability of a potential antifungal peptide through computational analysis.
    Rajasekaran R; Sethumadhavan R
    Protein Pept Lett; 2009; 16(11):1386-92. PubMed ID: 19508194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans.
    Maurya IK; Pathak S; Sharma M; Sanwal H; Chaudhary P; Tupe S; Deshpande M; Chauhan VS; Prasad R
    Peptides; 2011 Aug; 32(8):1732-40. PubMed ID: 21693143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence.
    De Samblanx GW; Fernandez del Carmen A; Sijtsma L; Plasman HH; Schaaper WM; Posthuma GA; Fant F; Meloen RH; Broekaert WF; van Amerongen A
    Pept Res; 1996; 9(6):262-8. PubMed ID: 9048418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus.
    Skouri-Gargouri H; Ben Ali M; Gargouri A
    Peptides; 2009 Oct; 30(10):1798-804. PubMed ID: 19591888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean.
    Chan YS; Wong JH; Fang EF; Pan WL; Ng TB
    Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):307-15. PubMed ID: 22321825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A synthetic form of tracheal antimicrobial peptide has both bactericidal and antifungal activities.
    Lawyer C; Watabe M; Pai S; Bakir H; Eagleton L; Mashimo T; Watabe K
    Drug Des Discov; 1996 Dec; 14(3):171-8. PubMed ID: 9017361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation.
    Mandal SM; Migliolo L; Franco OL; Ghosh AK
    Peptides; 2011 Aug; 32(8):1741-7. PubMed ID: 21736910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis.
    Dai L; Corzo G; Naoki H; Andriantsiferana M; Nakajima T
    Biochem Biophys Res Commun; 2002 May; 293(5):1514-22. PubMed ID: 12054688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Updates on Antifungal Peptides.
    Sharma D; Bisht GS
    Mini Rev Med Chem; 2020; 20(4):260-268. PubMed ID: 31556857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel antifungal peptide designed from the primary structure of a natural antimicrobial peptide purified from Argopecten purpuratus hemocytes.
    Arenas G; Guzmán F; Cárdenas C; Mercado L; Marshall SH
    Peptides; 2009 Aug; 30(8):1405-11. PubMed ID: 19481126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey.
    Zhao X; Zhou ZJ; Han Y; Wang ZZ; Fan J; Xiao HZ
    Microbiol Res; 2013 Nov; 168(9):598-606. PubMed ID: 23545354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial hemoglobin peptides in human menstrual blood.
    Mak P; Wójcik K; Wicherek L; Suder P; Dubin A
    Peptides; 2004 Nov; 25(11):1839-47. PubMed ID: 15501514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MS analysis and molecular characterization of Botrytis cinerea protease Prot-2. Use in bioactive peptides production.
    Abidi F; Aissaoui N; Gaudin JC; Chobert JM; Haertlé T; Marzouki MN
    Appl Biochem Biotechnol; 2013 May; 170(2):231-47. PubMed ID: 23494220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.