BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24980941)

  • 1. Dietary lipid unsaturation influences survival and oxidative modifications of an amyotrophic lateral sclerosis model in a gender-specific manner.
    Cacabelos D; Ayala V; Ramírez-Nunez O; Granado-Serrano AB; Boada J; Serrano JC; Cabré R; Nadal-Rey G; Bellmunt MJ; Ferrer I; Pamplona R; Portero-Otin M
    Neuromolecular Med; 2014 Dec; 16(4):669-85. PubMed ID: 24980941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival.
    Liu R; Li B; Flanagan SW; Oberley LW; Gozal D; Qiu M
    J Neurochem; 2002 Feb; 80(3):488-500. PubMed ID: 11905995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent blockade of free radical and microsomal prostaglandin E synthase-1-mediated PGE2 production improves safety and efficacy in a mouse model of amyotrophic lateral sclerosis.
    Shin JH; Lee YA; Lee JK; Lee YB; Cho W; Im DS; Lee JH; Yun BS; Springer JE; Gwag BJ
    J Neurochem; 2012 Sep; 122(5):952-61. PubMed ID: 22537108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis.
    Perluigi M; Fai Poon H; Hensley K; Pierce WM; Klein JB; Calabrese V; De Marco C; Butterfield DA
    Free Radic Biol Med; 2005 Apr; 38(7):960-8. PubMed ID: 15749392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation.
    Shibata N; Nagai R; Miyata S; Jono T; Horiuchi S; Hirano A; Kato S; Sasaki S; Asayama K; Kobayashi M
    Acta Neuropathol; 2000 Sep; 100(3):275-84. PubMed ID: 10965797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrolein-derived DNA adduct formation in human colon cancer cells: its role in apoptosis induction by docosahexaenoic acid.
    Pan J; Keffer J; Emami A; Ma X; Lan R; Goldman R; Chung FL
    Chem Res Toxicol; 2009 May; 22(5):798-806. PubMed ID: 19341237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis.
    Yip PK; Pizzasegola C; Gladman S; Biggio ML; Marino M; Jayasinghe M; Ullah F; Dyall SC; Malaspina A; Bendotti C; Michael-Titus A
    PLoS One; 2013; 8(4):e61626. PubMed ID: 23620776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hyper- and hypothyroidism on lipid peroxidation, unsaturation of phospholipids, glutathione system and oxidative damage to nuclear and mitochondrial DNA in mice skeletal muscle.
    Gredilla R; López Torres M; Portero-Otín M; Pamplona R; Barja G
    Mol Cell Biochem; 2001 May; 221(1-2):41-8. PubMed ID: 11506185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant status and dietary lipid unsaturation modulate oxidative DNA damage.
    Haegele AD; Briggs SP; Thompson HJ
    Free Radic Biol Med; 1994 Jan; 16(1):111-5. PubMed ID: 8299986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis.
    Xiong L; McCoy M; Komuro H; West XZ; Yakubenko V; Gao D; Dudiki T; Milo A; Chen J; Podrez EA; Trapp B; Byzova TV
    Free Radic Biol Med; 2022 Jan; 178():125-133. PubMed ID: 34871763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis.
    Ferrante RJ; Browne SE; Shinobu LA; Bowling AC; Baik MJ; MacGarvey U; Kowall NW; Brown RH; Beal MF
    J Neurochem; 1997 Nov; 69(5):2064-74. PubMed ID: 9349552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain.
    Pamplona R; Portero-Otin M; Sanz A; Requena J; Barja G
    Exp Gerontol; 2004 May; 39(5):725-33. PubMed ID: 15130667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target.
    Barber SC; Mead RJ; Shaw PJ
    Biochim Biophys Acta; 2006; 1762(11-12):1051-67. PubMed ID: 16713195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS.
    Patel BP; Safdar A; Raha S; Tarnopolsky MA; Hamadeh MJ
    PLoS One; 2010 Feb; 5(2):e9386. PubMed ID: 20195368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary palmitate and linoleate oxidations, oxidative stress, and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation.
    Giroud S; Perret M; Gilbert C; Zahariev A; Goudable J; Le Maho Y; Oudart H; Momken I; Aujard F; Blanc S
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R950-9. PubMed ID: 19625694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis.
    Benedusi V; Martorana F; Brambilla L; Maggi A; Rossi D
    J Biol Chem; 2012 Oct; 287(43):35899-911. PubMed ID: 22910911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary intakes of polyunsaturated fatty acids and indices of oxidative stress in human volunteers.
    Jenkinson A; Franklin MF; Wahle K; Duthie GG
    Eur J Clin Nutr; 1999 Jul; 53(7):523-8. PubMed ID: 10452406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model.
    Soon CPW; Donnelly PS; Turner BJ; Hung LW; Crouch PJ; Sherratt NA; Tan JL; Lim NK; Lam L; Bica L; Lim S; Hickey JL; Morizzi J; Powell A; Finkelstein DI; Culvenor JG; Masters CL; Duce J; White AR; Barnham KJ; Li QX
    J Biol Chem; 2011 Dec; 286(51):44035-44044. PubMed ID: 22033929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring systemic oxidative stress in an animal model of amyotrophic lateral sclerosis.
    Miana-Mena FJ; González-Mingot C; Larrodé P; Muñoz MJ; Oliván S; Fuentes-Broto L; Martínez-Ballarín E; Reiter RJ; Osta R; García JJ
    J Neurol; 2011 May; 258(5):762-9. PubMed ID: 21108037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis.
    Poon HF; Hensley K; Thongboonkerd V; Merchant ML; Lynn BC; Pierce WM; Klein JB; Calabrese V; Butterfield DA
    Free Radic Biol Med; 2005 Aug; 39(4):453-62. PubMed ID: 16043017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.