BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24981021)

  • 1. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.
    Baranitharan E; Khan MR; Prasad DM; Teo WF; Tan GY; Jose R
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):15-24. PubMed ID: 24981021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial fuel cells meet with external resistance.
    Katuri KP; Scott K; Head IM; Picioreanu C; Curtis TP
    Bioresour Technol; 2011 Feb; 102(3):2758-66. PubMed ID: 21146983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D; Pacheco-Catalan D; Valdez-Ojeda R; Canto-Canche B; Dominguez-Benetton X; Domínguez-Maldonado J; Alzate-Gaviria L
    BMC Biotechnol; 2014 Dec; 14():102. PubMed ID: 25487741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F
    Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.
    Nor MH; Mubarak MF; Elmi HSh; Ibrahim N; Wahab MF; Ibrahim Z
    Bioresour Technol; 2015 Aug; 190():458-65. PubMed ID: 25799955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose.
    Beecroft NJ; Zhao F; Varcoe JR; Slade RC; Thumser AE; Avignone-Rossa C
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):423-37. PubMed ID: 21984392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitinol as a suitable anode material for electricity generation in microbial fuel cells.
    Taşkan E; Bulak S; Taşkan B; Şaşmaz M; El Abed S; El Abed A
    Bioelectrochemistry; 2019 Aug; 128():118-125. PubMed ID: 30978518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electricity generation from lactate using microbial fuel cell and the distribution characteristics of anode microbial community].
    Liu R; Zhao Y; Lu S; Huang Q
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):744-52. PubMed ID: 22934355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities.
    Li J; Li H; Zheng J; Zhang L; Fu Q; Zhu X; Liao Q
    Bioresour Technol; 2017 Jun; 233():1-6. PubMed ID: 28258990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power overshoot in two-chambered microbial fuel cell (MFC).
    Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ
    Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and microbial diversity of palm oil mill effluent microbial fuel cell.
    Jong BC; Liew PW; Lebai Juri M; Kim BH; Mohd Dzomir AZ; Leo KW; Awang MR
    Lett Appl Microbiol; 2011 Dec; 53(6):660-7. PubMed ID: 21967346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power generation from veratryl alcohol and microbial community analysis in the microbial fuel cell.
    Li M; Zhang C; Liu G; Zhang R; Luo Y; Li J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1195-206. PubMed ID: 20563913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.
    Tee PF; Abdullah MO; Tan IAW; Amin MAM; Nolasco-Hipolito C; Bujang K
    Environ Technol; 2018 Apr; 39(8):1081-1088. PubMed ID: 28417676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.
    Hidalgo D; Sacco A; Hernández S; Tommasi T
    Bioresour Technol; 2015 Nov; 195():139-46. PubMed ID: 26166463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Sep; 24(1):41-7. PubMed ID: 18440217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.