These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 24981282)
1. Baltic Sea nutrient reductions--what should we aim for? Ahtiainen H; Artell J; Elmgren R; Hasselström L; Håkansson C J Environ Manage; 2014 Dec; 145():9-23. PubMed ID: 24981282 [TBL] [Abstract][Full Text] [Related]
2. The revealed preferences of Baltic Sea governments: Goals, policy instruments, and implementation of nutrient abatement measures. Elofsson K; von Brömssen C Mar Pollut Bull; 2017 May; 118(1-2):188-196. PubMed ID: 28242278 [TBL] [Abstract][Full Text] [Related]
3. Import-export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage area. Asmala E; Saikku L; Vienonen S Sci Total Environ; 2011 Nov; 409(23):4917-22. PubMed ID: 21907392 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus. Elmgren R; Larsson U ScientificWorldJournal; 2001 Oct; 1 Suppl 2():371-7. PubMed ID: 12805876 [TBL] [Abstract][Full Text] [Related]
5. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Andersen JH; Carstensen J; Conley DJ; Dromph K; Fleming-Lehtinen V; Gustafsson BG; Josefson AB; Norkko A; Villnäs A; Murray C Biol Rev Camb Philos Soc; 2017 Feb; 92(1):135-149. PubMed ID: 26467655 [TBL] [Abstract][Full Text] [Related]
6. Impact of changes in nutrient inputs to the water quality of the shallow Haapsalu Bay, the Baltic Sea. Iital A; Brandt N; Gröndahl F; Loigu E; Klõga M J Environ Monit; 2010 Aug; 12(8):1531-6. PubMed ID: 20577689 [TBL] [Abstract][Full Text] [Related]
7. Cost-effective control of interdependent water pollutants. Elofsson K Environ Manage; 2006 Jan; 37(1):54-68. PubMed ID: 16273327 [TBL] [Abstract][Full Text] [Related]
8. Nutrient budgets for European seas: a measure of the effectiveness of nutrient reduction policies. Artioli Y; Friedrich J; Gilbert AJ; McQuatters-Gollop A; Mee LD; Vermaat JE; Wulff F; Humborg C; Palmeri L; Pollehne F Mar Pollut Bull; 2008 Sep; 56(9):1609-17. PubMed ID: 18649896 [TBL] [Abstract][Full Text] [Related]
9. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea. Schubert PR; Karez R; Reusch TB; Dierking J Mar Pollut Bull; 2013 Jul; 72(1):64-70. PubMed ID: 23711843 [TBL] [Abstract][Full Text] [Related]
10. Shipborne nutrient dynamics and impact on the eutrophication in the Baltic Sea. Raudsepp U; Maljutenko I; Kõuts M; Granhag L; Wilewska-Bien M; Hassellöv IM; Eriksson KM; Johansson L; Jalkanen JP; Karl M; Matthias V; Moldanova J Sci Total Environ; 2019 Jun; 671():189-207. PubMed ID: 30928749 [TBL] [Abstract][Full Text] [Related]
11. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Kiedrzyńska E; Jóźwik A; Kiedrzyński M; Zalewski M Mar Pollut Bull; 2014 Nov; 88(1-2):162-73. PubMed ID: 25262405 [TBL] [Abstract][Full Text] [Related]
12. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies. Bryhn AC; Dimberg PH; Bergström L; Fredriksson RE; Mattila J; Bergström U Mar Pollut Bull; 2017 Jan; 114(2):664-670. PubMed ID: 27780582 [TBL] [Abstract][Full Text] [Related]
13. Trend correlations for coastal eutrophication and its main local and whole-sea drivers - Application to the Baltic Sea. Vigouroux G; Kari E; Beltrán-Abaunza JM; Uotila P; Yuan D; Destouni G Sci Total Environ; 2021 Jul; 779():146367. PubMed ID: 34030242 [TBL] [Abstract][Full Text] [Related]
14. Increasing the cost-effectiveness of nutrient reduction targets using different spatial scales. Czajkowski M; Andersen HE; Blicher-Mathiesen G; Budziński W; Elofsson K; Hagemejer J; Hasler B; Humborg C; Smart JCR; Smedberg E; Thodsen H; Wąs A; Wilamowski M; Żylicz T; Hanley N Sci Total Environ; 2021 Oct; 790():147824. PubMed ID: 34380262 [TBL] [Abstract][Full Text] [Related]
15. Has eutrophication promoted forage fish production in the Baltic Sea? Eero M; Andersson HC; Almroth-Rosell E; MacKenzie BR Ambio; 2016 Oct; 45(6):649-60. PubMed ID: 27170013 [TBL] [Abstract][Full Text] [Related]
16. Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice. Sandman AN; Näslund J; Gren IM; Norling K Ambio; 2018 Dec; 47(8):884-892. PubMed ID: 29730794 [TBL] [Abstract][Full Text] [Related]
17. The nutrient load from food waste generated onboard ships in the Baltic Sea. Wilewska-Bien M; Granhag L; Andersson K Mar Pollut Bull; 2016 Apr; 105(1):359-66. PubMed ID: 26992746 [TBL] [Abstract][Full Text] [Related]
18. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China. Strokal M; Kroeze C; Wang M; Bai Z; Ma L Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624 [TBL] [Abstract][Full Text] [Related]
19. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Bucholc K; Szymczak-Żyła M; Lubecki L; Zamojska A; Hapter P; Tjernström E; Kowalewska G Sci Total Environ; 2014 Mar; 473-474():298-307. PubMed ID: 24374591 [TBL] [Abstract][Full Text] [Related]
20. Sustainable phosphorus loadings from effective and cost-effective phosphorus management around the Baltic Sea. Bryhn AC PLoS One; 2009; 4(5):e5417. PubMed ID: 19412551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]