These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 24981331)

  • 1. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta.
    Ma LS; Hachani A; Lin JS; Filloux A; Lai EM
    Cell Host Microbe; 2014 Jul; 16(1):94-104. PubMed ID: 24981331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effector loading onto the VgrG carrier activates type VI secretion system assembly.
    Wu CF; Lien YW; Bondage D; Lin JS; Pilhofer M; Shih YL; Chang JH; Lai EM
    EMBO Rep; 2020 Jan; 21(1):e47961. PubMed ID: 31808291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T6SS nuclease effectors in
    Yu X; Yan Y; Zeng J; Liu Y; Sun X; Wang Z; Li L
    J Bacteriol; 2024 Jun; 206(6):e0027323. PubMed ID: 38717111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural disruption of Ntox15 nuclease effector domains by immunity proteins protects against type VI secretion system intoxication in Bacteroidales.
    Bosch DE; Abbasian R; Parajuli B; Peterson SB; Mougous JD
    mBio; 2023 Aug; 14(4):e0103923. PubMed ID: 37345922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.
    Yadav SK; Magotra A; Ghosh S; Krishnan A; Pradhan A; Kumar R; Das J; Sharma M; Jha G
    EMBO Rep; 2021 Jun; 22(6):e51857. PubMed ID: 33786997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism.
    Wen H; Geng Z; Gao Z; She Z; Dong Y
    Acta Crystallogr F Struct Biol Commun; 2020 May; 76(Pt 5):222-227. PubMed ID: 32356524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors.
    Kanarek K; Fridman CM; Bosis E; Salomon D
    Nat Commun; 2023 Aug; 14(1):4983. PubMed ID: 37591831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Determination of Antibacterial Activity During Bacterial Coculture.
    Alcoforado Diniz J; Earl C; Hernandez RE; Hollmann B; Coulthurst SJ
    Methods Mol Biol; 2024; 2715():593-600. PubMed ID: 37930554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Method to Perform In Vitro and In Planta Interbacterial Competition Assays: Killing Plant Pathogens by a Potent Biocontrol Agent.
    Civantos C; Ruiz A; Bernal P
    Methods Mol Biol; 2024; 2751():115-129. PubMed ID: 38265713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Recipient Susceptibility Factors During Contact-Dependent Interbacterial Competition.
    Lin HH; Filloux A; Lai EM
    Front Microbiol; 2020; 11():603652. PubMed ID: 33281802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin.
    Trotta KL; Hayes BM; Schneider JP; Wang J; Todor H; Grimes PR; Zhao Z; Hatleberg WL; Silvis MR; Kim R; Koo BM; Basler M; Chou S
    bioRxiv; 2023 May; ():. PubMed ID: 36747731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen.
    Platt TG; Fuqua C; Bever JD
    Evolution; 2012 Jun; 66(6):1953-65. PubMed ID: 22671559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell motility empowers bacterial contact weapons.
    Booth SC; Meacock OJ; Foster KR
    ISME J; 2024 Jul; ():. PubMed ID: 39073907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of short- and long-range weapons for bacterial competition.
    Booth SC; Smith WPJ; Foster KR
    Nat Ecol Evol; 2023 Dec; 7(12):2080-2091. PubMed ID: 38036633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism.
    Russell AB; Wexler AG; Harding BN; Whitney JC; Bohn AJ; Goo YA; Tran BQ; Barry NA; Zheng H; Peterson SB; Chou S; Gonen T; Goodlett DR; Goodman AL; Mougous JD
    Cell Host Microbe; 2014 Aug; 16(2):227-236. PubMed ID: 25070807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors.
    Durand E; Cambillau C; Cascales E; Journet L
    Trends Microbiol; 2014 Sep; 22(9):498-507. PubMed ID: 25042941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type VI secretion system helps find a niche.
    Kapitein N; Mogk A
    Cell Host Microbe; 2014 Jul; 16(1):5-6. PubMed ID: 25011102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.
    Alcoforado Diniz J; Coulthurst SJ
    J Bacteriol; 2015 Jul; 197(14):2350-60. PubMed ID: 25939831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Against friend and foe: type 6 effectors in plant-associated bacteria.
    Ryu CM
    J Microbiol; 2015 Mar; 53(3):201-8. PubMed ID: 25732741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae.
    Chang JH; Kim YG
    J Microbiol; 2015 Jan; 53(1):32-7. PubMed ID: 25471186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.