These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24981518)

  • 1. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis.
    Yoshizaki H; Okuda S
    BMC Genomics; 2014 Jul; 15(1):546. PubMed ID: 24981518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale analysis of the evolutionary histories of phosphorylation motifs in the human genome.
    Yoshizaki H; Okuda S
    Gigascience; 2015; 4():21. PubMed ID: 25949811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of protein phosphorylation for distinct functional modules in vertebrate genomes.
    Wang Z; Ding G; Geistlinger L; Li H; Liu L; Zeng R; Tateno Y; Li Y
    Mol Biol Evol; 2011 Mar; 28(3):1131-40. PubMed ID: 20956806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases.
    Tan CS; Bodenmiller B; Pasculescu A; Jovanovic M; Hengartner MO; Jørgensen C; Bader GD; Aebersold R; Pawson T; Linding R
    Sci Signal; 2009 Jul; 2(81):ra39. PubMed ID: 19638616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory motifs in Chk1.
    Caparelli ML; O'Connell MJ
    Cell Cycle; 2013 Mar; 12(6):916-22. PubMed ID: 23422000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of protein kinase signaling from yeast to man.
    Manning G; Plowman GD; Hunter T; Sudarsanam S
    Trends Biochem Sci; 2002 Oct; 27(10):514-20. PubMed ID: 12368087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation Site Motifs in Plant Protein Kinases and Their Substrates.
    Xi L; Zhang Z; Herold S; Kassem S; Wu XN; Schulze WX
    Methods Mol Biol; 2021; 2358():1-16. PubMed ID: 34270043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.
    Song L; Wang F; Dong Z; Hua X; Xia Q
    J Proteomics; 2017 Feb; 154():49-58. PubMed ID: 27903465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essay: Amersham Biosciences and Science Prize. PAS domains and metabolic status signaling.
    Rutter J
    Science; 2002 Nov; 298(5598):1567-8. PubMed ID: 12446897
    [No Abstract]   [Full Text] [Related]  

  • 10. Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase.
    Yang Z; Guo G; Zhang M; Liu CY; Hu Q; Lam H; Cheng H; Xue Y; Li J; Li N
    Mol Cell Proteomics; 2013 Dec; 12(12):3559-82. PubMed ID: 24043427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the MAPKKK regulator Ste50p in Saccharomyces cerevisiae: a casein kinase I phosphorylation site is required for proper mating function.
    Wu C; Arcand M; Jansen G; Zhong M; Iouk T; Thomas DY; Meloche S; Whiteway M
    Eukaryot Cell; 2003 Oct; 2(5):949-61. PubMed ID: 14555477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity.
    Goldman A; Roy J; Bodenmiller B; Wanka S; Landry CR; Aebersold R; Cyert MS
    Mol Cell; 2014 Aug; 55(3):422-435. PubMed ID: 24930733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.
    Corwin T; Woodsmith J; Apelt F; Fontaine JF; Meierhofer D; Helmuth J; Grossmann A; Andrade-Navarro MA; Ballif BA; Stelzl U
    Cell Syst; 2017 Aug; 5(2):128-139.e4. PubMed ID: 28837810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states.
    Sun S; Baryshnikova A; Brandt N; Gresham D
    Mol Syst Biol; 2020 May; 16(5):e9167. PubMed ID: 32449603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress.
    Lee YJ; Jeschke GR; Roelants FM; Thorner J; Turk BE
    Mol Cell Biol; 2012 Nov; 32(22):4705-17. PubMed ID: 22988299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation.
    Frödin M; Antal TL; Dümmler BA; Jensen CJ; Deak M; Gammeltoft S; Biondi RM
    EMBO J; 2002 Oct; 21(20):5396-407. PubMed ID: 12374740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of protein kinase substrate recognition at the active site.
    Bradley D; Beltrao P
    PLoS Biol; 2019 Jun; 17(6):e3000341. PubMed ID: 31233486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1.
    Beugnet A; Wang X; Proud CG
    J Biol Chem; 2003 Oct; 278(42):40717-22. PubMed ID: 12912989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of major ERK-related phosphorylation sites in Gab1.
    Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D
    Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.