These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24981538)

  • 1. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions.
    Tsai AP; Kimura T; Suzuki Y; Kameoka S; Shimoda M; Ishii Y
    J Chem Phys; 2013 Apr; 138(14):144701. PubMed ID: 24981538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermetallic: A Pseudoelement for Catalysis.
    Tsai AP; Kameoka S; Nozawa K; Shimoda M; Ishii Y
    Acc Chem Res; 2017 Dec; 50(12):2879-2885. PubMed ID: 29219300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature.
    Zhou Z; Ng YH; Xu S; Yang S; Gao Q; Cai X; Liao J; Fang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37299-37307. PubMed ID: 34324293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy.
    Rameshan C; Lorenz H; Mayr L; Penner S; Zemlyanov D; Arrigo R; Haevecker M; Blume R; Knop-Gericke A; Schlögl R; Klötzer B
    J Catal; 2012 Nov; 295(2-3):186-194. PubMed ID: 23226689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The one-pot synthesis of CuNi nanoparticles with a Ni-rich surface for the electrocatalytic methanol oxidation reaction.
    An Y; Ijaz H; Huang M; Qu J; Hu S
    Dalton Trans; 2020 Feb; 49(5):1646-1651. PubMed ID: 31942885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional investigations of methanol dehydrogenation on Pd-Zn surface alloy.
    Huang Y; Chen ZX
    Langmuir; 2010 Jul; 26(13):10796-802. PubMed ID: 20420406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface structural characteristics and tunable electronic properties of wet-chemically prepared Pd nanoparticles.
    Cook SC; Padmos JD; Zhang P
    J Chem Phys; 2008 Apr; 128(15):154705. PubMed ID: 18433256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures.
    Sheth PA; Neurock M; Smith CM
    J Phys Chem B; 2005 Jun; 109(25):12449-66. PubMed ID: 16852540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions.
    Boucher MB; Zugic B; Cladaras G; Kammert J; Marcinkowski MD; Lawton TJ; Sykes EC; Flytzani-Stephanopoulos M
    Phys Chem Chem Phys; 2013 Aug; 15(29):12187-96. PubMed ID: 23793350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evolution of homoleptic heterodinuclear copper-nickel carbonyl anions revealed using photoelectron velocity-map imaging.
    Liu Z; Xie H; Qin Z; Fan H; Tang Z
    Inorg Chem; 2014 Oct; 53(20):10909-16. PubMed ID: 25279999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic properties of [Pd(COOMe)(n)X(2-n)(PPh(3))(2)] (n = 0, 1, 2; X = Cl, NO(2), ONO(2), OAc and OTs) in the oxidative carbonylation of MeOH.
    Amadio E; Cavinato G; Dolmella A; Toniolo L
    Inorg Chem; 2010 Apr; 49(8):3721-9. PubMed ID: 20334352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and deformations of Pd-Ni core-shell nanoparticles.
    Sao-Joao S; Giorgio S; Penisson JM; Chapon C; Bourgeois S; Henry C
    J Phys Chem B; 2005 Jan; 109(1):342-7. PubMed ID: 16851020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microemulsion synthesis and electrocatalytic properties of carbon-supported Pd-Co-Au alloy nanoparticles.
    Rao ChV; Viswanathan B
    J Colloid Interface Sci; 2012 Feb; 367(1):337-41. PubMed ID: 22122945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance.
    Chang SH; Su WN; Yeh MH; Pan CJ; Yu KL; Liu DG; Lee JF; Hwang BJ
    Chemistry; 2010 Sep; 16(36):11064-71. PubMed ID: 20690117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation.
    Xu C; Li Q; Liu Y; Wang J; Geng H
    Langmuir; 2012 Jan; 28(3):1886-92. PubMed ID: 22195753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.