These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24981573)

  • 1. Stem-loop DNA-assisted silicon nanowires-based biochemical sensors with ultra-high sensitivity, specificity, and multiplexing capability.
    Xie J; Jiang X; Zhong Y; Lu Y; Wang S; Wei X; Su Y; He Y
    Nanoscale; 2014 Aug; 6(15):9215-22. PubMed ID: 24981573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.
    Rashid JI; Yusof NA; Abdullah J; Hashim U; Hajian R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():270-6. PubMed ID: 25491829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High pressure Raman scattering of silicon nanowires.
    Khachadorian S; Papagelis K; Scheel H; Colli A; Ferrari AC; Thomsen C
    Nanotechnology; 2011 May; 22(19):195707. PubMed ID: 21430319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis.
    Su S; Wei X; Zhong Y; Guo Y; Su Y; Huang Q; Lee ST; Fan C; He Y
    ACS Nano; 2012 Mar; 6(3):2582-90. PubMed ID: 22329677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.
    Poinern GE; Ng YJ; Fawcett D
    J Colloid Interface Sci; 2010 Dec; 352(2):259-64. PubMed ID: 20887996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon nanowires as field-effect transducers for biosensor development: a review.
    Noor MO; Krull UJ
    Anal Chim Acta; 2014 May; 825():1-25. PubMed ID: 24767146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.
    Lin SM; Geng S; Li N; Li NB; Luo HQ
    Talanta; 2016 May; 151():106-113. PubMed ID: 26946016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP
    ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A SERS/fluorescence dual-mode nanosensor based on the human telomeric G-quadruplex DNA: Application to mercury (II) detection.
    Liu M; Wang Z; Pan L; Cui Y; Liu Y
    Biosens Bioelectron; 2015 Jul; 69():142-7. PubMed ID: 25725462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity.
    Su S; He Y; Song S; Li D; Wang L; Fan C; Lee ST
    Nanoscale; 2010 Sep; 2(9):1704-7. PubMed ID: 20689869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer.
    Yu X; Wang Y; Zhou H; Liu Y; Wang Y; Li T; Wang Y
    Small; 2013 Feb; 9(4):525-30. PubMed ID: 23143874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam.
    Deng L; Ouyang X; Jin J; Ma C; Jiang Y; Zheng J; Li J; Li Y; Tan W; Yang R
    Anal Chem; 2013 Sep; 85(18):8594-600. PubMed ID: 23937672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite structure of SiO2@AgNPs@p-SiNWs for enhanced broadband optical antireflection.
    Lu R; Wang Y; Gu L; Wang W; Fang Y; Sha J
    Opt Express; 2013 Jul; 21(15):17484-91. PubMed ID: 23938618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout.
    Liang X; Wang L; Wang D; Zeng L; Fang Z
    Chem Commun (Camb); 2016 Feb; 52(10):2192-4. PubMed ID: 26725779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porosification-reduced optical trapping of silicon nanostructures.
    To WK; Fu J; Yang X; Roy VA; Huang Z
    Nanoscale; 2012 Sep; 4(19):5835-9. PubMed ID: 22899347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly active and enhanced photocatalytic silicon nanowire arrays.
    Wang FY; Yang QD; Xu G; Lei NY; Tsang YK; Wong NB; Ho JC
    Nanoscale; 2011 Aug; 3(8):3269-76. PubMed ID: 21717011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection.
    Huang J; Zhu Y; Zhong H; Yang X; Li C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7055-62. PubMed ID: 24831824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanonets for biological sensing applications with enhanced optical detection ability.
    Serre P; Stambouli V; Weidenhaupt M; Baron T; Ternon C
    Biosens Bioelectron; 2015 Jun; 68():336-342. PubMed ID: 25599846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.