These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24981677)

  • 21. Recovery of manganese and zinc from waste Zn-C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique.
    Biswas RK; Habib MA; Karmakar AK; Tanzin S
    Waste Manag; 2016 May; 51():149-156. PubMed ID: 26456667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co(II) and Ni(II) transport from model and real sulfate solutions by extraction with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272).
    Stefaniak J; Karwacka S; Janiszewska M; Dutta A; Rene ER; Regel-Rosocka M
    Chemosphere; 2020 Sep; 254():126869. PubMed ID: 32957283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923.
    Dewulf B; Batchu NK; Binnemans K
    ACS Sustain Chem Eng; 2020 Dec; 8(51):19032-19039. PubMed ID: 33457111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries.
    Nogueira CA; Margarido F
    Waste Manag; 2007; 27(11):1570-9. PubMed ID: 17166709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni-Mo/Al
    Parhi PK; Misra PK
    J Environ Manage; 2022 Mar; 306():114474. PubMed ID: 35026717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent extraction applied to the recovery of heavy metals from galvanic sludge.
    Silva JE; Paiva AP; Soares D; Labrincha A; Castro F
    J Hazard Mater; 2005 Apr; 120(1-3):113-8. PubMed ID: 15811671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants.
    Borowiak-Resterna A; Cierpiszewski R; Prochaska K
    J Hazard Mater; 2010 Jul; 179(1-3):828-33. PubMed ID: 20399013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extractive removal of chromium (VI) from industrial waste solution.
    Agrawal A; Pal C; Sahu KK
    J Hazard Mater; 2008 Nov; 159(2-3):458-64. PubMed ID: 18417285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cobalt products from real waste fractions of end of life lithium ion batteries.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2016 May; 51():214-221. PubMed ID: 26564258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of zinc and nickel ions in a strong acid through liquid-liquid extraction.
    Park YJ; Fray DJ
    J Hazard Mater; 2009 Apr; 163(1):259-65. PubMed ID: 18675511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.
    Al-Ne'aimi MM; Al-Khuder MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():365-73. PubMed ID: 23333690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.
    Nazemi MK; Rashchi F
    Waste Manag Res; 2012 May; 30(5):492-7. PubMed ID: 21930525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries.
    Yu ZJ; Li H; Yao JH; Wu JJ; Zhang YX; Xiao L
    Appl Biochem Biotechnol; 2020 May; 191(1):387-396. PubMed ID: 31950446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diphasic Sheeting Device with Cyanex-301 for Dislodging Feature of Divalent Cadmium from Industrial Effluent.
    Pei L; Wang C
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.