These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24981772)

  • 41. Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis.
    Kaur P; Saunders TE; Tolwinski NS
    Sci Rep; 2017 Nov; 7(1):16636. PubMed ID: 29192250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The driver of malignancy in KG-1a leukemic cells, FGFR1OP2-FGFR1, encodes an HSP90 addicted oncoprotein.
    Jin Y; Zhen Y; Haugsten EM; Wiedlocha A
    Cell Signal; 2011 Nov; 23(11):1758-66. PubMed ID: 21745565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.
    Park H; Kim NY; Lee S; Kim N; Kim J; Heo WD
    Nat Commun; 2017 Jun; 8(1):30. PubMed ID: 28646204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optogenetic Control of Cell Migration.
    Meshik X; O'Neill PR; Gautam N
    Methods Mol Biol; 2018; 1749():313-324. PubMed ID: 29526006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered BAR Domain Proteins.
    Jones T; Liu A; Cui B
    ACS Synth Biol; 2020 Apr; 9(4):893-901. PubMed ID: 32212723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetic regulation of endogenous proteins.
    Redchuk TA; Karasev MM; Verkhusha PV; Donnelly SK; Hülsemann M; Virtanen J; Moore HM; Vartiainen MK; Hodgson L; Verkhusha VV
    Nat Commun; 2020 Jan; 11(1):605. PubMed ID: 32001718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near-Infrared Light-Activated DNA-Agonist Nanodevice for Nongenetically and Remotely Controlled Cellular Signaling and Behaviors in Live Animals.
    Wang M; He F; Li H; Yang S; Zhang J; Ghosh P; Wang HH; Nie Z
    Nano Lett; 2019 Apr; 19(4):2603-2613. PubMed ID: 30907088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optogenetic control of cellular forces and mechanotransduction.
    Valon L; Marín-Llauradó A; Wyatt T; Charras G; Trepat X
    Nat Commun; 2017 Feb; 8():14396. PubMed ID: 28186127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools.
    Ueda Y; Sato M
    Chembiochem; 2018 Jun; 19(12):1217-1231. PubMed ID: 29577530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blue Light Switchable Cell-Cell Interactions Provide Reversible and Spatiotemporal Control Towards Bottom-Up Tissue Engineering.
    Yüz SG; Rasoulinejad S; Mueller M; Wegner AE; Wegner SV
    Adv Biosyst; 2019 Apr; 3(4):e1800310. PubMed ID: 32627428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
    Repina NA; Rosenbloom A; Mukherjee A; Schaffer DV; Kane RS
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():13-39. PubMed ID: 28592174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetics for gene expression in mammalian cells.
    Müller K; Naumann S; Weber W; Zurbriggen MD
    Biol Chem; 2015 Feb; 396(2):145-52. PubMed ID: 25153239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.
    Repina NA; McClave T; Johnson HJ; Bao X; Kane RS; Schaffer DV
    Cell Rep; 2020 Jun; 31(10):107737. PubMed ID: 32521262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic biological approaches to optogenetically control cell signaling.
    Kolar K; Weber W
    Curr Opin Biotechnol; 2017 Oct; 47():112-119. PubMed ID: 28715701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Development and application of optogenetic tools].
    Wei Q; Xu C; Wang M; Ye H
    Sheng Wu Gong Cheng Xue Bao; 2019 Dec; 35(12):2238-2256. PubMed ID: 31880133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Computational Protocol for Regulating Protein Binding Reactions with a Light-Sensitive Protein Dimer.
    Teets FD; Watanabe T; Hahn KM; Kuhlman B
    J Mol Biol; 2020 Feb; 432(4):805-814. PubMed ID: 31887287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.