BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

739 related articles for article (PubMed ID: 24981817)

  • 1. Inflammatory processes in renal fibrosis.
    Meng XM; Nikolic-Paterson DJ; Lan HY
    Nat Rev Nephrol; 2014 Sep; 10(9):493-503. PubMed ID: 24981817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction.
    Summers SA; Gan PY; Dewage L; Ma FT; Ooi JD; O'Sullivan KM; Nikolic-Paterson DJ; Kitching AR; Holdsworth SR
    Kidney Int; 2012 Sep; 82(6):676-85. PubMed ID: 22673890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease.
    Furuichi K; Kaneko S; Wada T
    Clin Exp Nephrol; 2009 Feb; 13(1):9-14. PubMed ID: 19085040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.
    Zheng D; Cao Q; Lee VW; Wang Y; Zheng G; Wang Y; Tan TK; Wang C; Alexander SI; Harris DC; Wang Y
    Kidney Int; 2012 May; 81(9):892-902. PubMed ID: 22318423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation.
    Zheng M; Cai J; Liu Z; Shu S; Wang Y; Tang C; Dong Z
    J Cell Mol Med; 2019 Jun; 23(6):3995-4004. PubMed ID: 30993884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction.
    Beghdadi W; Madjene LC; Claver J; Pejler G; Beaudoin L; Lehuen A; Daugas E; Blank U
    Kidney Int; 2013 Aug; 84(2):317-26. PubMed ID: 23515052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From inflammation to renal fibrosis: A one-way road in autoimmunity?
    Roccatello D; Lan HY; Sciascia S; Sethi S; Fornoni A; Glassock R
    Autoimmun Rev; 2024 Apr; 23(4):103466. PubMed ID: 37848157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury.
    Leemans JC; Butter LM; Pulskens WP; Teske GJ; Claessen N; van der Poll T; Florquin S
    PLoS One; 2009 May; 4(5):e5704. PubMed ID: 19479087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis.
    Pei G; Yao Y; Yang Q; Wang M; Wang Y; Wu J; Wang P; Li Y; Zhu F; Yang J; Zhang Y; Yang W; Deng X; Zhao Z; Zhu H; Ge S; Han M; Zeng R; Xu G
    Sci Adv; 2019 Jun; 5(6):eaaw5075. PubMed ID: 31249871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The loss of renal dendritic cells and activation of host adaptive immunity are long-term effects of ischemia/reperfusion injury following syngeneic kidney transplantation.
    Ozaki KS; Kimura S; Nalesnik MA; Sico RM; Zhang M; Ueki S; Ross MA; Stolz DB; Murase N
    Kidney Int; 2012 May; 81(10):1015-1025. PubMed ID: 22278023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammatory Mediators and Renal Fibrosis.
    Meng XM
    Adv Exp Med Biol; 2019; 1165():381-406. PubMed ID: 31399975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and molecular mechanisms of renal fibrosis.
    Liu Y
    Nat Rev Nephrol; 2011 Oct; 7(12):684-96. PubMed ID: 22009250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulating Type 1 Angiotensin Receptors on T Lymphocytes Attenuates Renal Fibrosis.
    Wen Y; Rudemiller NP; Zhang J; Jeffs AD; Griffiths R; Lu X; Ren J; Privratsky J; Crowley SD
    Am J Pathol; 2019 May; 189(5):981-988. PubMed ID: 31000207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion of CD4(+) T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy.
    Wang Y; Wang Y; Feng X; Bao S; Yi S; Kairaitis L; Tay YC; Rangan GK; Harris DC
    Kidney Int; 2001 Mar; 59(3):975-84. PubMed ID: 11231352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic cells in progressive renal disease: some answers, many questions.
    Kitching AR
    Nephrol Dial Transplant; 2014 Dec; 29(12):2185-93. PubMed ID: 24739483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic connection between inflammation and fibrosis.
    Lee SB; Kalluri R
    Kidney Int Suppl; 2010 Dec; (119):S22-6. PubMed ID: 21116313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis.
    Anders HJ; Ryu M
    Kidney Int; 2011 Nov; 80(9):915-925. PubMed ID: 21814171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubular atrophy and interstitial fibrosis after renal transplantation is dependent on galectin-3.
    Dang Z; MacKinnon A; Marson LP; Sethi T
    Transplantation; 2012 Mar; 93(5):477-84. PubMed ID: 22306573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury.
    Ikezumi Y; Suzuki T; Yamada T; Hasegawa H; Kaneko U; Hara M; Yanagihara T; Nikolic-Paterson DJ; Saitoh A
    Pediatr Nephrol; 2015 Jun; 30(6):1007-17. PubMed ID: 25487670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complement C3 Produced by Macrophages Promotes Renal Fibrosis via IL-17A Secretion.
    Liu Y; Wang K; Liang X; Li Y; Zhang Y; Zhang C; Wei H; Luo R; Ge S; Xu G
    Front Immunol; 2018; 9():2385. PubMed ID: 30405606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.