These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24982252)

  • 1. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model.
    Li X; Peng Z; Lei H; Dao M; Karniadakis GE
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tank-treading of swollen erythrocytes in shear flows.
    Dodson WR; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021922. PubMed ID: 22463259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid bilayer and cytoskeletal interactions in a red blood cell.
    Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
    Quinn DJ; Pivkin I; Wong SY; Chiam KH; Dao M; Karniadakis GE; Suresh S
    Ann Biomed Eng; 2011 Mar; 39(3):1041-50. PubMed ID: 21240637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056308. PubMed ID: 23214877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Biophys J; 2010 May; 98(10):2215-25. PubMed ID: 20483330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology.
    Rezghi A; Zhang J
    Biophys J; 2022 Sep; 121(18):3393-3410. PubMed ID: 35986517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
    Bagchi P; Johnson PC; Popel AS
    J Biomech Eng; 2005 Dec; 127(7):1070-80. PubMed ID: 16502649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full dynamics of a red blood cell in shear flow.
    Dupire J; Socol M; Viallat A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20808-13. PubMed ID: 23213229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.
    Li X; Li H; Chang HY; Lykotrafitis G; Em Karniadakis G
    J Biomech Eng; 2017 Feb; 139(2):0210081-02100813. PubMed ID: 27814430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.