These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24982257)
1. Reduced-order modelling numerical homogenization. Abdulle A; Bai Y Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982257 [TBL] [Abstract][Full Text] [Related]
2. Some variance reduction methods for numerical stochastic homogenization. Blanc X; Le Bris C; Legoll F Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2066):. PubMed ID: 27002065 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers. Leissing T; Jean P; Defrance J; Soize C J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021 [TBL] [Abstract][Full Text] [Related]
5. A constrained backpropagation approach for the adaptive solution of partial differential equations. Rudd K; Di Muro G; Ferrari S IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):571-84. PubMed ID: 24807452 [TBL] [Abstract][Full Text] [Related]
6. Orthogonal cubic splines for the numerical solution of nonlinear parabolic partial differential equations. Alavi J; Aminikhah H MethodsX; 2023; 10():102190. PubMed ID: 37168771 [TBL] [Abstract][Full Text] [Related]
7. Operator compression with deep neural networks. Kröpfl F; Maier R; Peterseim D Adv Contin Discret Model; 2022; 2022(1):29. PubMed ID: 35531267 [TBL] [Abstract][Full Text] [Related]
8. A fourth-order arithmetic average compact finite-difference method for nonlinear singular elliptic PDEs on a 3D smooth quasi-variable grid network. Jha N; Singh B MethodsX; 2023 Dec; 11():102424. PubMed ID: 37846352 [TBL] [Abstract][Full Text] [Related]
9. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Basiri Parsa A; Rashidi MM; Anwar Bég O; Sadri SM Comput Biol Med; 2013 Sep; 43(9):1142-53. PubMed ID: 23930807 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations. Park CH; Aral MM J Contam Hydrol; 2007 Jun; 92(1-2):33-49. PubMed ID: 17222477 [TBL] [Abstract][Full Text] [Related]
12. Implicit level set algorithms for modelling hydraulic fracture propagation. Peirce A Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597787 [TBL] [Abstract][Full Text] [Related]
13. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method. Sheu YL; Li PC IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928 [TBL] [Abstract][Full Text] [Related]
14. Differential morphology and image processing. Maragos P IEEE Trans Image Process; 1996; 5(6):922-37. PubMed ID: 18285181 [TBL] [Abstract][Full Text] [Related]
15. Lattice models for large-scale simulations of coherent wave scattering. Wang S; Teixeira FL Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016701. PubMed ID: 14995749 [TBL] [Abstract][Full Text] [Related]
16. Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations. Beck C; Gonon L; Jentzen A SN Partial Differ Equ Appl; 2024; 5(6):31. PubMed ID: 39399741 [TBL] [Abstract][Full Text] [Related]
17. A cluster-based incremental potential approach for reduced order homogenization of bones. Ju X; Xu C; Xu Y; Liang L; Liang J; Tao W Int J Numer Method Biomed Eng; 2024 Nov; 40(11):e3872. PubMed ID: 39375849 [TBL] [Abstract][Full Text] [Related]
18. A time-domain numerical modeling of two-dimensional wave propagation in porous media with frequency-dependent dynamic permeability. Blanc E; Chiavassa G; Lombard B J Acoust Soc Am; 2013 Dec; 134(6):4610. PubMed ID: 25669273 [TBL] [Abstract][Full Text] [Related]
19. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. Treeby BE; Jaros J; Rendell AP; Cox BT J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann model for wave propagation. Zhang J; Yan G; Shi X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026706. PubMed ID: 19792280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]