These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24982603)

  • 61. Rapid Self-Assembly Spherical Li1.2Mn0.56Ni0.16Co0.08O2 with Improved Performances by Microwave Hydrothermal Method as Cathode for Lithium-Ion Batteries.
    Shi S; Wang T; Cao M; Wang J; Zhao M; Yang G
    ACS Appl Mater Interfaces; 2016 May; 8(18):11476-87. PubMed ID: 27098184
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage.
    He W; Yang W; Wang C; Deng X; Liu B; Xu X
    Phys Chem Chem Phys; 2016 Jun; 18(22):15235-43. PubMed ID: 27211207
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparative Investigation of 0.5Li
    Wang PB; Luo MZ; Zheng JC; He ZJ; Tong H; Yu WJ
    Front Chem; 2018; 6():159. PubMed ID: 29868562
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-Assembled Microspheres Formed from α-MnO2 Nanotubes as an Anode Material for Rechargeable Lithium-Ion Batteries.
    Jan SS; Nurgul S; Shi X; Xia H
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7181-5. PubMed ID: 26716307
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Supercapacitor behaviour of manganese dioxide decorated mesoporous silica synthesized by a rapid sol-gel inverse micelle method.
    Pal A; Das T; Ghosh S; Nandi M
    Dalton Trans; 2020 Sep; 49(36):12716-12730. PubMed ID: 32959828
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes-Manganese Dioxide Ternary Composite for Potential Application in Supercapattery.
    Iqbal J; Ansari MO; Numan A; Wageh S; Al-Ghamdi A; Alam MG; Kumar P; Jafer R; Bashir S; Rajpar AH
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33291451
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Co-Existence of Iron Oxide Nanoparticles and Manganese Oxide Nanorods as Decoration of Hollow Carbon Spheres for Boosting Electrochemical Performance of Li-Ion Battery.
    Wenelska K; Trukawka M; Kukulka W; Chen X; Mijowska E
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832303
    [TBL] [Abstract][Full Text] [Related]  

  • 70. MnO
    Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High Capacity Nano-Sized Carbon Spheres for Lithium-Ion Battery Anode Materials.
    Wang Y; Yu G; Chen X; Wang A
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30970618
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cu-Doped
    Min F; Yang S; Zhang Q; Yang C; Gao W; Wang S; Teng F; Li G; Ai Z
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4296-4301. PubMed ID: 29442777
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Facile synthesis of MnO
    Lin Z; Xiang X; Chen K; Peng S; Jiang X; Hou L
    J Colloid Interface Sci; 2019 Mar; 540():466-475. PubMed ID: 30665170
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nano "Koosh Balls" of Mesoporous MnO
    Maqbool Q; Singh C; Jash P; Paul A; Srivastava A
    Chemistry; 2017 Mar; 23(17):4216-4226. PubMed ID: 28102914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Study on the Synthesis of Mn
    Kong Y; Jiao R; Zeng S; Cui C; Li H; Xu S; Wang L
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32093184
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Alpha-MnO
    Poochai C; Sriprachuabwong C; Sodtipinta J; Lohitkarn J; Pasakon P; Primpray V; Maeboonruan N; Lomas T; Wisitsoraat A; Tuantranont A
    J Colloid Interface Sci; 2021 Feb; 583():734-745. PubMed ID: 33075606
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Low-Temperature Assembly of Ultrathin Amorphous MnO
    Zeng C; Weng W; Lv T; Xiao W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30470-30478. PubMed ID: 30160098
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode.
    McCulloch WD; Ren X; Yu M; Huang Z; Wu Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications.
    Venkateswarlu P; Umeshbabu E; Naveen Kumar U; Nagaraja P; Tirupathi P; Ranga Rao G; Justin P
    J Colloid Interface Sci; 2017 Oct; 503():17-27. PubMed ID: 28500936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.