These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24982605)

  • 1. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer.
    Lee SY; Kim JY; Lee JY; Song HJ; Lee S; Choi KH; Shin G
    Nanoscale Res Lett; 2014; 9(1):294. PubMed ID: 24982605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping Sodium Tungsten Bronze-Like (Na
    Yang G; Hu D; Xia F; Yang C; Liu Y; He X; Shpotyuk Y; Chen H; Gao Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32206-32217. PubMed ID: 35786831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.
    Guo C; Yin S; Huang L; Sato T
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2794-9. PubMed ID: 21675747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Transparency and NIR-Shielding Properties of Nanocrystalline Sodium Tungsten Bronzes.
    Chao L; Sun C; Dou J; Li J; Liu J; Ma Y; Xiao L
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption peak decomposition of an inhomogeneous nanoparticle ensemble of hexagonal tungsten bronzes using the reduced Mie scattering integration method.
    Machida K; Adachi K
    Sci Rep; 2024 Mar; 14(1):6549. PubMed ID: 38503858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon.
    Zhang P; Li S; Liu C; Wei X; Wu Z; Jiang Y; Chen Z
    Nanoscale Res Lett; 2014; 9(1):519. PubMed ID: 25285058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing NIR Shielding Properties of Au/CsWO
    Piwnuan C; Muangphat C; Wootthikanokkhan J
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38894010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Monodispersed Cs
    Huang L; Tang H; Bai Y; Pu Y; Li L; Cheng J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoarchitectonics of Glass Coatings for Near-Infrared Shielding: From Solid-State Cluster-Based Niobium Chlorides to the Shaping of Nanocomposite Films.
    Lebastard C; Wilmet M; Cordier S; Comby-Zerbino C; MacAleese L; Dugourd P; Uchikoshi T; Dorcet V; Amela-Cortes M; Renaud A; Costuas K; Grasset F
    ACS Appl Mater Interfaces; 2022 May; 14(18):21116-21130. PubMed ID: 35500275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Cellulose-Based Light-Management Film with Ultraviolet Blocking and Near-Infrared Shielding Performance.
    Li S; Cui B; Xie H; Jia X; Hao S; Wang W
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42522-42530. PubMed ID: 36084176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of P(EDOT/Ani) : PSS with enhanced heat shielding efficiency
    Park C; Im S; Cho W; Kim Y; Kim JH
    RSC Adv; 2018 Apr; 8(23):12992-12998. PubMed ID: 35541257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent Heat Shielding Properties of Core-Shell Structured Nanocrystalline Cs
    Chao L; Sun C; Li J; Sun M; Liu J; Ma Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun CuS/PVP Nanowires and Superior Near-Infrared Filtration Efficiency for Thermal Shielding Applications.
    Kwon YT; Ryu SH; Shin JW; Yeo WH; Choa YH
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6575-6580. PubMed ID: 30663880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic Defect Engineering for Controlling the Infrared Absorption of Hexagonal Cesium Tungsten Bronze Nanoparticles.
    Nakakura S; Arif AF; Machida K; Adachi K; Ogi T
    Inorg Chem; 2019 Jul; 58(14):9101-9107. PubMed ID: 31244089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvothermal fabrication of rubidium tungsten bronze for the absorption of near infrared light.
    Guo C; Yin S; Dong Q; Kimura T; Tanaka M; Hang le T; Wu X; Sato T
    J Nanosci Nanotechnol; 2013 May; 13(5):3236-9. PubMed ID: 23858836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles.
    Chen CJ; Chen DH
    Nanoscale Res Lett; 2013 Feb; 8(1):57. PubMed ID: 23379652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Crystallite Size Dependence of the Thermochromic Properties of Nanocomposite VO
    Fleer NA; Pelcher KE; Nieto K; Braham EJ; Zou J; Horrocks GA; Naoi Y; Depner SW; Schultz BJ; Amano J; Sellers DG; Banerjee S
    ACS Omega; 2018 Oct; 3(10):14280-14293. PubMed ID: 31458119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Solution Process of VO
    Yu Z; Wang Z; Li B; Tian S; Tang G; Pang A; Zeng D; Sankar G
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat-Shielding and Self-Cleaning Smart Windows: Near-Infrared Reflective Photonic Crystals with Self-Healing Omniphobicity via Layer-by-Layer Self-Assembly.
    Nakamura C; Manabe K; Tenjimbayashi M; Tokura Y; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22731-22738. PubMed ID: 29894154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.