These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24982737)

  • 1. The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells?
    Wang SZ; Yan RT
    J Ophthalmic Vis Res; 2014 Jan; 9(1):83-93. PubMed ID: 24982737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons.
    Li X; Ma W; Zhuo Y; Yan RT; Wang SZ
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):516-25. PubMed ID: 19628733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor-like cells in transgenic mouse eye.
    Yan RT; Li X; Wang SZ
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4766-75. PubMed ID: 23847312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat.
    Carr AJ; Vugler AA; Hikita ST; Lawrence JM; Gias C; Chen LL; Buchholz DE; Ahmado A; Semo M; Smart MJ; Hasan S; da Cruz L; Johnson LV; Clegg DO; Coffey PJ
    PLoS One; 2009 Dec; 4(12):e8152. PubMed ID: 19997644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.
    Sun J; Mandai M; Kamao H; Hashiguchi T; Shikamura M; Kawamata S; Sugita S; Takahashi M
    Stem Cells; 2015 May; 33(5):1543-53. PubMed ID: 25728228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating retinal neurons by reprogramming retinal pigment epithelial cells.
    Wang SZ; Ma W; Yan RT; Mao W
    Expert Opin Biol Ther; 2010 Aug; 10(8):1227-39. PubMed ID: 20528097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration.
    Surendran H; Nandakumar S; Reddy K VB; Stoddard J; Mohan K V; Upadhyay PK; McGill TJ; Pal R
    Stem Cell Res Ther; 2021 Jan; 12(1):70. PubMed ID: 33468244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Retinal Pigment Epithelium Stem Cell (RPESC).
    Saini JS; Temple S; Stern JH
    Adv Exp Med Biol; 2016; 854():557-62. PubMed ID: 26427459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Based Therapies for Age-Related Macular Degeneration.
    Khateb S; Jha S; Bharti K; Banin E
    Adv Exp Med Biol; 2021; 1256():265-293. PubMed ID: 33848006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Retinal pigment epithelial cell transplantation: perspective].
    Tamai M
    Nippon Ganka Gakkai Zasshi; 1996 Dec; 100(12):982-1006. PubMed ID: 9022310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells.
    Krohne TU; Westenskow PD; Kurihara T; Friedlander DF; Lehmann M; Dorsey AL; Li W; Zhu S; Schultz A; Wang J; Siuzdak G; Ding S; Friedlander M
    Stem Cells Transl Med; 2012 Feb; 1(2):96-109. PubMed ID: 22532929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor-like cells from reprogramming cultured mammalian RPE cells.
    Yan RT; Li X; Huang J; Guidry C; Wang SZ
    Mol Vis; 2013; 19():1178-87. PubMed ID: 23734087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors.
    Yan RT; Liang L; Ma W; Li X; Xie W; Wang SZ
    J Comp Neurol; 2010 Feb; 518(4):526-46. PubMed ID: 20029995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells.
    Chen F; Liu X; Chen Y; Liu JY; Lu H; Wang W; Lu X; Dean KC; Gao L; Kaplan HJ; Dean DC; Peng X; Liu Y
    EBioMedicine; 2020 Feb; 52():102618. PubMed ID: 31982829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors.
    Gong J; Sagiv O; Cai H; Tsang SH; Del Priore LV
    Exp Eye Res; 2008 Jun; 86(6):957-65. PubMed ID: 18472095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem cell based therapies for age-related macular degeneration: The promises and the challenges.
    Nazari H; Zhang L; Zhu D; Chader GJ; Falabella P; Stefanini F; Rowland T; Clegg DO; Kashani AH; Hinton DR; Humayun MS
    Prog Retin Eye Res; 2015 Sep; 48():1-39. PubMed ID: 26113213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy.
    Greene WA; Kaini RR; Wang HC
    Adv Exp Med Biol; 2019; 1186():33-53. PubMed ID: 31654385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced pluripotent stem cells and derivative photoreceptor precursors as therapeutic cells for retinal degenerations.
    Shrestha R; Wen YT; Tsai RK
    Ci Ji Yi Xue Za Zhi; 2020; 32(2):101-112. PubMed ID: 32269941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness.
    Singh RK; Nasonkin IO
    Front Cell Neurosci; 2020; 14():179. PubMed ID: 33132839
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.