These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 24982876)
1. High-dimensional additive hazards regression for oral squamous cell carcinoma using microarray data: a comparative study. Hamidi O; Tapak L; Jafarzadeh Kohneloo A; Sadeghifar M Biomed Res Int; 2014; 2014():393280. PubMed ID: 24982876 [TBL] [Abstract][Full Text] [Related]
2. Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data. Tapak L; Mahjub H; Sadeghifar M; Saidijam M; Poorolajal J Iran J Public Health; 2016 Feb; 45(2):239-48. PubMed ID: 27114989 [TBL] [Abstract][Full Text] [Related]
3. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
4. Competing risks data analysis with high-dimensional covariates: an application in bladder cancer. Tapak L; Saidijam M; Sadeghifar M; Poorolajal J; Mahjub H Genomics Proteomics Bioinformatics; 2015 Jun; 13(3):169-76. PubMed ID: 25907251 [TBL] [Abstract][Full Text] [Related]
5. Survival analysis with high-dimensional covariates: an application in microarray studies. Engler D; Li Y Stat Appl Genet Mol Biol; 2009; 8(1):Article 14. PubMed ID: 19222381 [TBL] [Abstract][Full Text] [Related]
6. Additive risk survival model with microarray data. Ma S; Huang J BMC Bioinformatics; 2007 Jun; 8():192. PubMed ID: 17559667 [TBL] [Abstract][Full Text] [Related]
7. Can survival prediction be improved by merging gene expression data sets? Yasrebi H; Sperisen P; Praz V; Bucher P PLoS One; 2009 Oct; 4(10):e7431. PubMed ID: 19851466 [TBL] [Abstract][Full Text] [Related]
8. Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma. Mount DW; Putnam CW; Centouri SM; Manziello AM; Pandey R; Garland LL; Martinez JD BMC Med Genomics; 2014 Jun; 7():33. PubMed ID: 24916928 [TBL] [Abstract][Full Text] [Related]
9. Can a metastatic gene expression profile outperform tumor size as a predictor of occult lymph node metastasis in oral cancer patients? Méndez E; Lohavanichbutr P; Fan W; Houck JR; Rue TC; Doody DR; Futran ND; Upton MP; Yueh B; Zhao LP; Schwartz SM; Chen C Clin Cancer Res; 2011 Apr; 17(8):2466-73. PubMed ID: 21300763 [TBL] [Abstract][Full Text] [Related]
11. Gene expression profiling predicts the development of oral cancer. Saintigny P; Zhang L; Fan YH; El-Naggar AK; Papadimitrakopoulou VA; Feng L; Lee JJ; Kim ES; Ki Hong W; Mao L Cancer Prev Res (Phila); 2011 Feb; 4(2):218-29. PubMed ID: 21292635 [TBL] [Abstract][Full Text] [Related]
12. Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival. Xu C; Liu Y; Wang P; Fan W; Rue TC; Upton MP; Houck JR; Lohavanichbutr P; Doody DR; Futran ND; Zhao LP; Schwartz SM; Chen C; Méndez E Mol Cancer; 2010 Jun; 9():143. PubMed ID: 20537188 [TBL] [Abstract][Full Text] [Related]
13. Boosting for high-dimensional time-to-event data with competing risks. Binder H; Allignol A; Schumacher M; Beyersmann J Bioinformatics; 2009 Apr; 25(7):890-6. PubMed ID: 19244389 [TBL] [Abstract][Full Text] [Related]
14. Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. Parris TZ; Aziz L; Kovács A; Hajizadeh S; Nemes S; Semaan M; Chen CY; Karlsson P; Helou K BMC Cancer; 2014 May; 14():324. PubMed ID: 24885002 [TBL] [Abstract][Full Text] [Related]
15. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Matsuo K; Purushotham S; Jiang B; Mandelbaum RS; Takiuchi T; Liu Y; Roman LD Am J Obstet Gynecol; 2019 Apr; 220(4):381.e1-381.e14. PubMed ID: 30582927 [TBL] [Abstract][Full Text] [Related]
16. Non-overlapping and non-cell-type-specific gene expression signatures predict lung cancer survival. Sun Z; Wigle DA; Yang P J Clin Oncol; 2008 Feb; 26(6):877-83. PubMed ID: 18281660 [TBL] [Abstract][Full Text] [Related]
17. A two-CpG-based prognostic signature for oral squamous cell carcinoma overall survival. Chen Y; Hei N; Zhao J; Peng S; Yang K; Chen H; Cui Z; Jin L; Sun R; Guo J J Cell Biochem; 2019 Jun; 120(6):9082-9090. PubMed ID: 30548666 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of cysteine-glutamate transporter and CD44 for prediction of recurrence and survival in patients with oral cavity squamous cell carcinoma. Lee JR; Roh JL; Lee SM; Park Y; Cho KJ; Choi SH; Nam SY; Kim SY Head Neck; 2018 Nov; 40(11):2340-2346. PubMed ID: 30303590 [TBL] [Abstract][Full Text] [Related]
19. MiR-92b as a marker for TPF induced chemotherapy response prediction and prognosis evaluation in with advanced oral squamous cell carcinoma patients. Wen J; Xu H; Liu R; Chen Q; Dai Y; Xu Y Cell Mol Biol (Noisy-le-grand); 2020 Jun; 66(3):24-31. PubMed ID: 32538743 [TBL] [Abstract][Full Text] [Related]
20. Assessment of evaluation criteria for survival prediction from genomic data. Bøvelstad HM; Borgan O Biom J; 2011 Mar; 53(2):202-16. PubMed ID: 21308723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]