These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2498290)

  • 1. Protein phosphorylation in Bradyrhizobium japonicum bacteroids and cultures.
    Karr DB; Emerich DW
    J Bacteriol; 1989 Jun; 171(6):3420-6. PubMed ID: 2498290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A succinate transport mutant of Bradyrhizobium japonicum forms ineffective nodules on soybeans.
    el-Din AK
    Can J Microbiol; 1992 Mar; 38(3):230-4. PubMed ID: 1393826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids.
    Salminen SO; Streeter JG
    J Bacteriol; 1987 Feb; 169(2):495-9. PubMed ID: 2879829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.
    Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G
    Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
    Pessi G; Ahrens CH; Rehrauer H; Lindemann A; Hauser F; Fischer HM; Hennecke H
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1353-63. PubMed ID: 17977147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periplasmic metabolism of glutamate and aspartate by intact Bradyrhizobium japonicum bacteroids.
    Streeter JG; Salminen SO
    Biochim Biophys Acta; 1990 Sep; 1035(3):257-65. PubMed ID: 1976384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved soybean root association of N-starved Bradyrhizobium japonicum.
    López-García SL; Vázquez TE; Favelukes G; Lodeiro AR
    J Bacteriol; 2001 Dec; 183(24):7241-52. PubMed ID: 11717284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assay for binding of Bradyrhizobium japonicum to cultured soybean cells.
    Ho SC; Ye WZ; Schindler M; Wang JL
    J Bacteriol; 1988 Sep; 170(9):3882-90. PubMed ID: 3410819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules.
    Streeter JG; Gomez ML
    Appl Environ Microbiol; 2006 Jun; 72(6):4250-5. PubMed ID: 16751539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots.
    Quelas JI; López-García SL; Casabuono A; Althabegoiti MJ; Mongiardini EJ; Pérez-Giménez J; Couto A; Lodeiro AR
    Arch Microbiol; 2006 Aug; 186(2):119-28. PubMed ID: 16802172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum.
    Loh J; Garcia M; Stacey G
    J Bacteriol; 1997 May; 179(9):3013-20. PubMed ID: 9139921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation.
    Karr DB; Liang RT; Reuhs BL; Emerich DW
    Planta; 2000 Jul; 211(2):218-26. PubMed ID: 10945216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo phosphorylation following [32P]orthophosphate injection into neostriatum or hippocampus: selective and rapid labeling of electrophoretically separated brain proteins.
    Mitrius JC; Morgan DG; Routtenberg A
    Brain Res; 1981 May; 212(1):67-81. PubMed ID: 7225866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated levels of stress proteins associated with bacterial symbiosis in Amoeba proteus and soybean root nodule cells.
    Choi EY; Ahn GS; Jeon KW
    Biosystems; 1991; 25(3):205-12. PubMed ID: 1912387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.
    Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O
    Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean.
    Zawoznik MS; Tomaro ML
    Pest Manag Sci; 2005 Oct; 61(10):1003-8. PubMed ID: 15920784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-regulated retinal-dependent reversible phosphorylation of Halobacterium proteins.
    Spudich JL; Stoeckenius W
    J Biol Chem; 1980 Jun; 255(12):5501-3. PubMed ID: 7380823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate.
    Green LS; Emerich DW
    J Bacteriol; 1997 Jan; 179(1):194-201. PubMed ID: 8981998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules.
    Ouyang LJ; Whelan J; Weaver CD; Roberts DM; Day DA
    FEBS Lett; 1991 Nov; 293(1-2):188-90. PubMed ID: 1959659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions.
    Sugawara M; Shah GR; Sadowsky MJ; Paliy O; Speck J; Vail AW; Gyaneshwar P
    Mol Plant Microbe Interact; 2011 Apr; 24(4):451-7. PubMed ID: 21190435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.