BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2498342)

  • 1. Inhibition by sulphonylureas of vasorelaxation induced by K+ channel activators in vitro.
    Wilson C
    J Auton Pharmacol; 1989 Feb; 9(1):71-8. PubMed ID: 2498342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative relaxant effects of cromakalim and pinacidil on the tonic contraction of canine coronary artery induced by phorbol 12,13-dibutylate.
    Kuromaru O; Sakai K
    Clin Exp Pharmacol Physiol; 1996; 23(6-7):493-7. PubMed ID: 8800572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of several potassium channel openers and glibenclamide on the uterus of the rat.
    Piper I; Minshall E; Downing SJ; Hollingsworth M; Sadraei H
    Br J Pharmacol; 1990 Dec; 101(4):901-7. PubMed ID: 2128195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cromakalim on contractions in rabbit isolated renal artery in the presence and absence of extracellular Ca2+.
    Wilson C; Cooper SM
    Br J Pharmacol; 1989 Dec; 98(4):1303-11. PubMed ID: 2575415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that imidazol(id)ine- and sulphonylurea-based antagonists of cromakalim act at different sites in the rat thoracic aorta.
    Challinor JL; McPherson GA
    Clin Exp Pharmacol Physiol; 1993; 20(7-8):467-75. PubMed ID: 8403526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that pinacidil may promote the opening of ATP-sensitive K+ channels yet inhibit the opening of Ca2(+)-activated K+ channels in K(+)-contracted canine mesenteric artery.
    Masuzawa K; Matsuda T; Asano M
    Br J Pharmacol; 1990 May; 100(1):143-9. PubMed ID: 2115387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxant effects of the potassium channel activators BRL 38227 and pinacidil on guinea-pig and human airway smooth muscle, and blockade of their effects by glibenclamide and BRL 31660.
    Buckle DR; Arch JR; Bowring NE; Foster KA; Taylor JF; Taylor SG; Shaw DJ
    Pulm Pharmacol; 1993 Mar; 6(1):77-86. PubMed ID: 8477155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of antidiabetic sulphonylureas, cromakalim and their interaction in guinea-pig isolated tracheal smooth muscle.
    Nielsen-Kudsk JE; Thirstrup S
    Pulm Pharmacol; 1993 Sep; 6(3):185-92. PubMed ID: 8219573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cromakalim-, pinacidil-, and nicorandil-induced relaxation of the 5-hydroxytryptamine precontracted rat isolated basilar artery.
    Ksoll E; Parsons AA; Mackert JR; Schilling L; Wahl M
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Apr; 343(4):377-83. PubMed ID: 1830131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific antagonism by glibenclamide of negative inotropic effects of potassium channel openers in canine atrial muscle.
    Satoh E; Yanagisawa T; Taira N
    Jpn J Pharmacol; 1990 Oct; 54(2):133-41. PubMed ID: 2150209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T; Teshigawara T; Taira N
    Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of effects of cromakalim and pinacidil on mechanical activity and 86Rb efflux in dog coronary arteries.
    Masuzawa K; Asano M; Matsuda T; Imaizumi Y; Watanabe M
    J Pharmacol Exp Ther; 1990 May; 253(2):586-93. PubMed ID: 2160002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery.
    Eltze M
    Eur J Pharmacol; 1989 Jun; 165(2-3):231-9. PubMed ID: 2528466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoglycemic sulfonylureas antagonize the effects of cromakalim and pinacidil on 86Rb fluxes and contractile activity in the rat aorta.
    Lebrun P; Fang ZY; Antoine MH; Herchuelz A; Hermann M; Berkenboom G; Fontaine J
    Pharmacology; 1990; 41(1):36-48. PubMed ID: 2122482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of the effects of potassium channel modulating agents on mouse intestinal smooth muscle.
    Yeung CK; McCurrie JR; Wood D
    J Pharm Pharmacol; 2002 Mar; 54(3):425-33. PubMed ID: 11902810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of the potassium channel openers cromakalim and pinacidil and the cromakalim analog U-89232 on isolated vascular and cardiac tissue.
    Norman NR; Toombs CF; Khan SA; Buchanan LV; Cimini MG; Gibson JK; Meisheri KD; Shebuski RJ
    Pharmacology; 1994 Aug; 49(2):86-95. PubMed ID: 7972325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries.
    Satoh K; Yamada H; Taira N
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):76-82. PubMed ID: 1827660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular pharmacology of ATP-sensitive K+ channels: interactions between glyburide and K+ channel openers.
    Meisheri KD; Khan SA; Martin JL
    J Vasc Res; 1993; 30(1):2-12. PubMed ID: 8435468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of K+ channel blockade on the vasorelaxant activity of cromakalim, pinacidil and nicorandil.
    Wilson C; Coldwell MC; Howlett DR; Cooper SM; Hamilton TC
    Eur J Pharmacol; 1988 Aug; 152(3):331-9. PubMed ID: 2851450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.