BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24983517)

  • 1. In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons.
    Wang YY; Wu HI; Hsu WL; Chung HW; Yang PH; Chang YC; Chow WY
    Mol Cell Neurosci; 2014 Jul; 61():141-51. PubMed ID: 24983517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NILE/L1 and NCAM-polysialic acid expression on growing axons of isolated neurons.
    van den Pol AN; Kim WT
    J Comp Neurol; 1993 Jun; 332(2):237-57. PubMed ID: 8331215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization and translation of mRNA in sympathetic axons.
    Lee SK; Hollenbeck PJ
    J Cell Sci; 2003 Nov; 116(Pt 21):4467-78. PubMed ID: 13130093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frizzled receptors in neurons: from growth cones to the synapse.
    Varela-Nallar L; Ramirez VT; Gonzalez-Billault C; Inestrosa NC
    Cytoskeleton (Hoboken); 2012 Jul; 69(7):528-34. PubMed ID: 22407911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule 4 in hippocampal neurons.
    Swanwick CC; Shapiro ME; Vicini S; Wenthold RJ
    Mol Cell Neurosci; 2010 Nov; 45(3):213-25. PubMed ID: 20600927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rufy3, a protein specifically expressed in neurons, interacts with actin-bundling protein Fascin to control the growth of axons.
    Wei Z; Sun M; Liu X; Zhang J; Jin Y
    J Neurochem; 2014 Sep; 130(5):678-92. PubMed ID: 24720729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth cone-like waves transport actin and promote axonogenesis and neurite branching.
    Flynn KC; Pak CW; Shaw AE; Bradke F; Bamburg JR
    Dev Neurobiol; 2009 Oct; 69(12):761-79. PubMed ID: 19513994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drebrin E is involved in the regulation of axonal growth through actin-myosin interactions.
    Mizui T; Kojima N; Yamazaki H; Katayama M; Hanamura K; Shirao T
    J Neurochem; 2009 Apr; 109(2):611-22. PubMed ID: 19222710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of axon-enriched microRNAs localized to growth cones of cortical neurons.
    Sasaki Y; Gross C; Xing L; Goshima Y; Bassell GJ
    Dev Neurobiol; 2014 Mar; 74(3):397-406. PubMed ID: 23897634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The "SCG10-LIke Protein" SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10.
    Poulain FE; Sobel A
    Mol Cell Neurosci; 2007 Feb; 34(2):137-46. PubMed ID: 17145186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebroglycan, a developmentally regulated cell-surface heparan sulfate proteoglycan, is expressed on developing axons and growth cones.
    Ivins JK; Litwack ED; Kumbasar A; Stipp CS; Lander AD
    Dev Biol; 1997 Apr; 184(2):320-32. PubMed ID: 9133438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Y-P30 promotes axonal growth by stabilizing growth cones.
    Neumann JR; Dash-Wagh S; Jüngling K; Tsai T; Meschkat M; Räk A; Schönfelder S; Riedel C; Hamad MI; Wiese S; Pape HC; Gottmann K; Kreutz MR; Wahle P
    Brain Struct Funct; 2015 Jul; 220(4):1935-50. PubMed ID: 24728870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O; Campbell G; Bird MM
    J Neurocytol; 2003 Nov; 32(9):1077-89. PubMed ID: 15044840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport?
    Ruthel G; Banker G
    Cell Motil Cytoskeleton; 1998; 40(2):160-73. PubMed ID: 9634213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia.
    Sabo SL; McAllister AK
    Nat Neurosci; 2003 Dec; 6(12):1264-9. PubMed ID: 14608359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon.
    Tao K; Matsuki N; Koyama R
    Dev Neurobiol; 2014 Jun; 74(6):557-73. PubMed ID: 24218086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses.
    Antar LN; Li C; Zhang H; Carroll RC; Bassell GJ
    Mol Cell Neurosci; 2006; 32(1-2):37-48. PubMed ID: 16631377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons.
    Zelina P; Avci HX; Thelen K; Pollerberg GE
    Development; 2005 Aug; 132(16):3609-18. PubMed ID: 16033798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IRES-mediated translation of cofilin regulates axonal growth cone extension and turning.
    Choi JH; Wang W; Park D; Kim SH; Kim KT; Min KT
    EMBO J; 2018 Mar; 37(5):. PubMed ID: 29440227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.