These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

630 related articles for article (PubMed ID: 24983521)

  • 1. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia.
    Lin H; Hsu FC; Baumann BH; Coulter DA; Anderson SA; Lynch DR
    Mol Cell Neurosci; 2014 Jul; 61():163-75. PubMed ID: 24983521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases.
    Lin H; Hsu FC; Baumann BH; Coulter DA; Lynch DR
    Neurobiol Dis; 2014 Mar; 63():129-40. PubMed ID: 24326163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.
    Georgiev D; Yoshihara T; Kawabata R; Matsubara T; Tsubomoto M; Minabe Y; Lewis DA; Hashimoto T
    Schizophr Bull; 2016 Jul; 42(4):992-1002. PubMed ID: 26980143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced CHRNA7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABA(A) receptor subunits.
    Bates RC; Stith BJ; Stevens KE; Adams CE
    Neuroscience; 2014 Jul; 273():52-64. PubMed ID: 24836856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.
    Lozada AF; Wang X; Gounko NV; Massey KA; Duan J; Liu Z; Berg DK
    J Neurosci; 2012 May; 32(22):7651-61. PubMed ID: 22649244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of alpha-7 and alpha-4 nicotinic acetylcholine receptors by GABAergic neurons of rostral ventral medulla and caudal pons.
    Dehkordi O; Millis RM; Dennis GC; Jazini E; Williams C; Hussain D; Jayam-Trouth A
    Brain Res; 2007 Dec; 1185():95-102. PubMed ID: 17950703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of α7 nicotinic acetylcholine receptor immunoreactivity on GABAergic interneurons in layers I-III of the rat retrosplenial granular cortex.
    Murakami K; Ishikawa Y; Sato F
    Neuroscience; 2013 Nov; 252():443-59. PubMed ID: 23985568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
    Belforte JE; Zsiros V; Sklar ER; Jiang Z; Yu G; Li Y; Quinlan EM; Nakazawa K
    Nat Neurosci; 2010 Jan; 13(1):76-83. PubMed ID: 19915563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFRalpha1 signaling.
    Canty AJ; Dietze J; Harvey M; Enomoto H; Milbrandt J; Ibáñez CF
    J Neurosci; 2009 Aug; 29(34):10695-705. PubMed ID: 19710321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAD67 deficiency in parvalbumin interneurons produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal cortex.
    Lazarus MS; Krishnan K; Huang ZJ
    Cereb Cortex; 2015 May; 25(5):1290-6. PubMed ID: 24275833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Evolving Therapeutic Rationale for Targeting the α
    Deutsch SI; Burket JA
    Curr Top Behav Neurosci; 2020; 45():167-208. PubMed ID: 32468495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α4β2
    Aracri P; Meneghini S; Coatti A; Amadeo A; Becchetti A
    Neuroscience; 2017 Jan; 340():48-61. PubMed ID: 27793780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus.
    Alkondon M; Pereira EF; Yu P; Arruda EZ; Almeida LE; Guidetti P; Fawcett WP; Sapko MT; Randall WR; Schwarcz R; Tagle DA; Albuquerque EX
    J Neurosci; 2004 May; 24(19):4635-48. PubMed ID: 15140935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity.
    Volman V; Behrens MM; Sejnowski TJ
    J Neurosci; 2011 Dec; 31(49):18137-48. PubMed ID: 22159125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible inhibition of GABAA receptors by alpha7-containing nicotinic receptors on the vertebrate postsynaptic neurons.
    Zhang J; Berg DK
    J Physiol; 2007 Mar; 579(Pt 3):753-63. PubMed ID: 17204496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment.
    Kjaerby C; Bundgaard C; Fejgin K; Kristiansen U; Dalby NO
    Neuropharmacology; 2013 Sep; 72():157-68. PubMed ID: 23643744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parvalbumin, but not calretinin, neurons express high levels of α1-containing GABA
    Równiak M; Kolenkiewicz M; Kozłowska A
    J Chem Neuroanat; 2017 Dec; 86():41-51. PubMed ID: 28834708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia.
    Curley AA; Eggan SM; Lazarus MS; Huang ZJ; Volk DW; Lewis DA
    Neurobiol Dis; 2013 Feb; 50():179-86. PubMed ID: 23103418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.
    Endo T; Yanagawa Y; Obata K; Isa T
    J Neurophysiol; 2005 Dec; 94(6):3893-902. PubMed ID: 16107532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha.
    Lucas EK; Markwardt SJ; Gupta S; Meador-Woodruff JH; Lin JD; Overstreet-Wadiche L; Cowell RM
    J Neurosci; 2010 May; 30(21):7227-35. PubMed ID: 20505089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.