BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24983527)

  • 1. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria.
    Meredith LK; Rao D; Bosak T; Klepac-Ceraj V; Tada KR; Hansel CM; Ono S; Prinn RG
    Environ Microbiol Rep; 2014 Jun; 6(3):226-38. PubMed ID: 24983527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase.
    Constant P; Chowdhury SP; Pratscher J; Conrad R
    Environ Microbiol; 2010 Mar; 12(3):821-9. PubMed ID: 20050876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2.
    Constant P; Poissant L; Villemur R
    ISME J; 2008 Oct; 2(10):1066-76. PubMed ID: 18548118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen.
    Kanno M; Constant P; Tamaki H; Kamagata Y
    Environ Microbiol; 2016 Sep; 18(8):2495-506. PubMed ID: 26636257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breathing air to save energy--new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis.
    Liot Q; Constant P
    Microbiologyopen; 2016 Feb; 5(1):47-59. PubMed ID: 26541261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric hydrogen scavenging: from enzymes to ecosystems.
    Greening C; Constant P; Hards K; Morales SE; Oakeshott JG; Russell RJ; Taylor MC; Berney M; Conrad R; Cook GM
    Appl Environ Microbiol; 2015 Feb; 81(4):1190-9. PubMed ID: 25501483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria.
    Constant P; Chowdhury SP; Hesse L; Pratscher J; Conrad R
    Appl Environ Microbiol; 2011 Sep; 77(17):6027-35. PubMed ID: 21742924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.
    Greening C; Carere CR; Rushton-Green R; Harold LK; Hards K; Taylor MC; Morales SE; Stott MB; Cook GM
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10497-502. PubMed ID: 26240343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidobacteria are active and abundant members of diverse atmospheric H
    Giguere AT; Eichorst SA; Meier DV; Herbold CW; Richter A; Greening C; Woebken D
    ISME J; 2021 Feb; 15(2):363-376. PubMed ID: 33024291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil.
    Baba R; Kimura M; Asakawa S; Watanabe T
    FEMS Microbiol Lett; 2014 Jan; 350(2):249-56. PubMed ID: 24261851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.
    Greening C; Berney M; Hards K; Cook GM; Conrad R
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4257-61. PubMed ID: 24591586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription of [FeFe]-Hydrogenase Genes during H
    Baba R; Morita M; Asakawa S; Watanabe T
    Microbes Environ; 2017 Jun; 32(2):125-132. PubMed ID: 28502969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth and morphological differentiation of acidophilic and neutrophilic soil streptomyces].
    Zakaliukina IuV; Zenova GM; Zviagintsev DG
    Mikrobiologiia; 2004; 73(1):89-93. PubMed ID: 15074046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide.
    Islam ZF; Cordero PRF; Feng J; Chen YJ; Bay SK; Jirapanjawat T; Gleadow RM; Carere CR; Stott MB; Chiri E; Greening C
    ISME J; 2019 Jul; 13(7):1801-1813. PubMed ID: 30872805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H
    Schmitz RA; Pol A; Mohammadi SS; Hogendoorn C; van Gelder AH; Jetten MSM; Daumann LJ; Op den Camp HJM
    ISME J; 2020 May; 14(5):1223-1232. PubMed ID: 32042101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taxonomic and functional diversity of Streptomyces in a forest soil.
    Bontemps C; Toussaint M; Revol PV; Hotel L; Jeanbille M; Uroz S; Turpault MP; Blaudez D; Leblond P
    FEMS Microbiol Lett; 2013 May; 342(2):157-67. PubMed ID: 23489323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.
    Maier RJ; Olczak A; Maier S; Soni S; Gunn J
    Infect Immun; 2004 Nov; 72(11):6294-9. PubMed ID: 15501756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Hydrogen, a Neglected Key Driver of Soil Biogeochemical Processes.
    Piché-Choquette S; Constant P
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of development in Streptomyces analysed by genome comparisons.
    Chater KF; Chandra G
    FEMS Microbiol Rev; 2006 Sep; 30(5):651-72. PubMed ID: 16911038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on population diversity and antimicrobial activity of actinomycete from acidic soil in Xizang area].
    Luo HL; Huang Y; Wang LM; Liu ZH; Xie JP; Hu CH
    Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):724-7. PubMed ID: 16342764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.