BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24983856)

  • 1. Super-resolution fluorescence imaging of biocompatible carbon dots.
    Leménager G; De Luca E; Sun YP; Pompa PP
    Nanoscale; 2014 Aug; 6(15):8617-23. PubMed ID: 24983856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy.
    Xu Y; Xu R; Wang Z; Zhou Y; Shen Q; Ji W; Dang D; Meng L; Tang BZ
    Chem Soc Rev; 2021 Jan; 50(1):667-690. PubMed ID: 33313632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.
    Yang X; Yang X; Li Z; Li S; Han Y; Chen Y; Bu X; Su C; Xu H; Jiang Y; Lin Q
    J Colloid Interface Sci; 2015 Oct; 456():1-6. PubMed ID: 26074383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents.
    Sachdev A; Gopinath P
    Analyst; 2015 Jun; 140(12):4260-9. PubMed ID: 25927267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STED microscopy: increased resolution for medical research?
    Blom H; Brismar H
    J Intern Med; 2014 Dec; 276(6):560-78. PubMed ID: 24980774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging.
    Jiang K; Sun S; Zhang L; Lu Y; Wu A; Cai C; Lin H
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5360-3. PubMed ID: 25832292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking.
    Hua XW; Bao YW; Zeng J; Wu FG
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32647-32658. PubMed ID: 31381288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes.
    Bates M; Huang B; Zhuang X
    Curr Opin Chem Biol; 2008 Oct; 12(5):505-14. PubMed ID: 18809508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles.
    Vinegoni C; Razansky D; Hilderbrand SA; Shao F; Ntziachristos V; Weissleder R
    Opt Lett; 2009 Sep; 34(17):2566-8. PubMed ID: 19724491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging.
    Cheng L; Li Y; Zhai X; Xu B; Cao Z; Liu W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20487-97. PubMed ID: 25285670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Density Super-Resolution Localization Imaging with Blinking Carbon Dots.
    He H; Liu X; Li S; Wang X; Wang Q; Li J; Wang J; Ren H; Ge B; Wang S; Zhang X; Huang F
    Anal Chem; 2017 Nov; 89(21):11831-11838. PubMed ID: 28976184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging.
    Zhou L; Li Z; Liu Z; Ren J; Qu X
    Langmuir; 2013 May; 29(21):6396-403. PubMed ID: 23642102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging.
    Shen C; Sun Y; Wang J; Lu Y
    Nanoscale; 2014 Aug; 6(15):9139-47. PubMed ID: 24978846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu(2+) ions in cells.
    Vedamalai M; Periasamy AP; Wang CW; Tseng YT; Ho LC; Shih CC; Chang HT
    Nanoscale; 2014 Nov; 6(21):13119-25. PubMed ID: 25250814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
    Johnson SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):266-81. PubMed ID: 25298332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing video-rate STED nanoscopy and confocal microscopy of living neurons.
    Lauterbach MA; Keller J; Schönle A; Kamin D; Westphal V; Rizzoli SO; Hell SW
    J Biophotonics; 2010 Jul; 3(7):417-24. PubMed ID: 20379984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STED microscopy with continuous wave beams.
    Willig KI; Harke B; Medda R; Hell SW
    Nat Methods; 2007 Nov; 4(11):915-8. PubMed ID: 17952088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery.
    Zhou L; Li Z; Liu Z; Yin M; Ren J; Qu X
    Nanoscale; 2014; 6(3):1445-52. PubMed ID: 24316678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo.
    Ter Veer MJT; Pfeiffer T; Nägerl UV
    Methods Mol Biol; 2017; 1663():45-64. PubMed ID: 28924658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-mode super-resolution imaging with stimulated emission depletion microscopy and fluorescence emission difference microscopy.
    Wang Y; Ma Y; Kuang C; Fang Y; Xu Y; Liu X; Ding Z
    Appl Opt; 2015 Jun; 54(17):5425-31. PubMed ID: 26192843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.