These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 24983896)
1. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896 [TBL] [Abstract][Full Text] [Related]
2. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833 [TBL] [Abstract][Full Text] [Related]
3. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
4. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
5. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
6. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
7. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Hu X; Cook S; Wang P; Hwang HM Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968 [TBL] [Abstract][Full Text] [Related]
9. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
10. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
11. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Basant N; Gupta S Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981 [TBL] [Abstract][Full Text] [Related]
12. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
13. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Sizochenko N; Gajewicz A; Leszczynski J; Puzyn T Nanoscale; 2016 Apr; 8(13):7203-8. PubMed ID: 26972917 [TBL] [Abstract][Full Text] [Related]
14. Development of structure-activity relationship for metal oxide nanoparticles. Liu R; Zhang HY; Ji ZX; Rallo R; Xia T; Chang CH; Nel A; Cohen Y Nanoscale; 2013 Jun; 5(12):5644-53. PubMed ID: 23689214 [TBL] [Abstract][Full Text] [Related]
15. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851 [TBL] [Abstract][Full Text] [Related]
16. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Jiang W; Mashayekhi H; Xing B Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963 [TBL] [Abstract][Full Text] [Related]
17. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. Chusuei CC; Wu CH; Mallavarapu S; Hou FY; Hsu CM; Winiarz JG; Aronstam RS; Huang YW Chem Biol Interact; 2013 Nov; 206(2):319-26. PubMed ID: 24120544 [TBL] [Abstract][Full Text] [Related]
18. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Djurišić AB; Leung YH; Ng AM; Xu XY; Lee PK; Degger N; Wu RS Small; 2015 Jan; 11(1):26-44. PubMed ID: 25303765 [TBL] [Abstract][Full Text] [Related]
19. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. Shin HK; Kim KY; Park JW; No KT SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078 [TBL] [Abstract][Full Text] [Related]
20. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach. Roy J; Roy K SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]