These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24983896)

  • 1. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.
    Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J
    Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach.
    Roy J; Roy K
    SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions.
    Toropova AP; Toropov AA; Leszczynski J; Sizochenko N
    Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2.
    Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on "Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models" by N. Sizochenko, A. Gajewicz, J. Leszczynski and T. Puzyn, Nanoscale, 2016, 8, 7203.
    Tasi DA; Csontos J; Nagy B; Kónya Z; Tasi G
    Nanoscale; 2018 Nov; 10(44):20863-20866. PubMed ID: 30325387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria.
    Ahmadi S
    Chemosphere; 2020 Mar; 242():125192. PubMed ID: 31677509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities?
    Parada J; Rubilar O; Fernández-Baldo MA; Bertolino FA; Durán N; Seabra AB; Tortella GR
    Crit Rev Biotechnol; 2019 Mar; 39(2):157-172. PubMed ID: 30396282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques.
    Sizochenko N; Syzochenko M; Fjodorova N; Rasulev B; Leszczynski J
    Ecotoxicol Environ Saf; 2019 Dec; 185():109733. PubMed ID: 31580980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity prediction of nano metal oxides on different lung cells via Nano-QSAR.
    Cheng K; Pan Y; Yuan B
    Environ Pollut; 2024 Mar; 344():123405. PubMed ID: 38244905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles.
    Huang Y; Li X; Xu S; Zheng H; Zhang L; Chen J; Hong H; Kusko R; Li R
    Environ Health Perspect; 2020 Jun; 128(6):67010. PubMed ID: 32692251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress on the carcinogenicity of metal nanomaterials.
    Liu L; Kong L
    J Appl Toxicol; 2021 Sep; 41(9):1334-1344. PubMed ID: 33527484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling study for predicting altered cellular activity induced by nanomaterials based on Dlk1-Dio3 gene expression and structural relationships.
    Yuan B; Wang Y; Zong C; Sang L; Chen S; Liu C; Pan Y; Zhang H
    Chemosphere; 2023 Sep; 335():139090. PubMed ID: 37268226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials.
    Choi JS; Trinh TX; Yoon TH; Kim J; Byun HG
    Chemosphere; 2019 Feb; 217():243-249. PubMed ID: 30419378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms.
    Zhu Y; Wu J; Chen M; Liu X; Xiong Y; Wang Y; Feng T; Kang S; Wang X
    Chemosphere; 2019 Dec; 237():124403. PubMed ID: 31356996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells.
    Roy J; Roy K
    Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.
    Gousiadou C; Marchese Robinson RL; Kotzabasaki M; Doganis P; Wilkins TA; Jia X; Sarimveis H; Harper SL
    Nanotoxicology; 2021 May; 15(4):446-476. PubMed ID: 33586589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.