These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24983963)

  • 1. Deep bottleneck features for spoken language identification.
    Jiang B; Song Y; Wei S; Liu JH; McLoughlin IV; Dai LR
    PLoS One; 2014; 9(7):e100795. PubMed ID: 24983963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frame-by-frame language identification in short utterances using deep neural networks.
    Gonzalez-Dominguez J; Lopez-Moreno I; Moreno PJ; Gonzalez-Rodriguez J
    Neural Netw; 2015 Apr; 64():49-58. PubMed ID: 25242129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.
    Lozano-Diez A; Zazo R; Toledano DT; Gonzalez-Rodriguez J
    PLoS One; 2017; 12(8):e0182580. PubMed ID: 28796806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-MONA: A dilated mixed-order non-local attention network for speaker and language recognition.
    Miao X; McLoughlin I; Wang W; Zhang P
    Neural Netw; 2021 Jul; 139():201-211. PubMed ID: 33780726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confusion2Vec 2.0: Enriching ambiguous spoken language representations with subwords.
    Gurunath Shivakumar P; Georgiou P; Narayanan S
    PLoS One; 2022; 17(3):e0264488. PubMed ID: 35245327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning speaker-specific characteristics with a deep neural architecture.
    Chen K; Salman A
    IEEE Trans Neural Netw; 2011 Nov; 22(11):1744-56. PubMed ID: 21954206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks.
    Vetráb M; Gosztolya G
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating Noise Robustness in Speech Command Recognition by Noise Augmentation of Training Data.
    Pervaiz A; Hussain F; Israr H; Tahir MA; Raja FR; Baloch NK; Ishmanov F; Zikria YB
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards End-2-end Learning for Predicting Behavior Codes from Spoken Utterances in Psychotherapy Conversations.
    Singla K; Chen Z; Atkins DC; Narayanan S
    Proc Conf Assoc Comput Linguist Meet; 2020 Jul; 2020():3797-3803. PubMed ID: 36751434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential Elements of Natural Language Processing: What the Radiologist Should Know.
    Chen PH
    Acad Radiol; 2020 Jan; 27(1):6-12. PubMed ID: 31537505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular fuzzy-neuro controller driven by spoken language commands.
    Pulasinghe K; Watanabe K; Izumi K; Kiguchi K
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):293-302. PubMed ID: 15369072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbo Processing for Speech Recognition.
    Moon TK; Gunther JH; Broadus C; Hou W; Nelson N
    IEEE Trans Cybern; 2014 Jan; 44(1):83-91. PubMed ID: 23757535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep joint learning for language recognition.
    Li L; Li Z; Liu Y; Hong Q
    Neural Netw; 2021 Sep; 141():72-86. PubMed ID: 33866304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matching patients to clinical trials using semantically enriched document representation.
    Hassanzadeh H; Karimi S; Nguyen A
    J Biomed Inform; 2020 May; 105():103406. PubMed ID: 32169670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representation Learning Based Speech Assistive System for Persons With Dysarthria.
    Chandrakala S; Rajeswari N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1510-1517. PubMed ID: 27992342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.