These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24984225)

  • 21. Fabrication and Computational Study of a Chemiresistive NO
    Bian W; Dou H; Wang X; Li C; Zhang Y; Gong C; Sun N; Liu S; Li P; Jing Q; Liu B
    ACS Sens; 2023 Feb; 8(2):748-756. PubMed ID: 36749024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and NO2-sensing properties of one-dimensional tungsten oxide nanowire bundles.
    Qin Y; Bao Z; Hu M; Zhang J
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11142-6. PubMed ID: 22409073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas nanosensor design packages based on tungsten oxide: mesocages, hollow spheres, and nanowires.
    Hoa ND; El-Safty SA
    Nanotechnology; 2011 Dec; 22(48):485503. PubMed ID: 22071572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method.
    Wang C; Guo L; Xie N; Kou X; Sun Y; Chuai X; Zhang S; Song H; Wang Y; Lu G
    J Colloid Interface Sci; 2018 Feb; 512():740-749. PubMed ID: 29107925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of graphene quantum dots with discrete band gaps on SnO
    Lee J; Park M; Song YG; Cho D; Lee K; Shim YS; Jeon S
    Nanoscale Adv; 2023 May; 5(10):2767-2775. PubMed ID: 37205284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High selectivity of sulfur-doped SnO
    Xu K; Tian S; Zhu J; Yang Y; Shi J; Yu T; Yuan C
    Nanoscale; 2018 Nov; 10(44):20761-20771. PubMed ID: 30402627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors.
    Akamatsu T; Itoh T; Izu N; Shin W
    Sensors (Basel); 2013 Sep; 13(9):12467-81. PubMed ID: 24048338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis, structure, and gas-sensing properties of Pt-functionalized TiO2 nanowire sensors.
    Jin C; Kim H; Choi SW; Kim SS; Lee C
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5833-8. PubMed ID: 25936011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity enhancement of nanostructured SnO2 gas sensors fabricated using the glancing angle deposition method.
    Gwon HJ; Moon HG; Jang HW; Yoon SJ; Yoo KS
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2740-4. PubMed ID: 23763153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced graphene oxide for room-temperature gas sensors.
    Lu G; Ocola LE; Chen J
    Nanotechnology; 2009 Nov; 20(44):445502. PubMed ID: 19809107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.
    Tammanoon N; Wisitsoraat A; Sriprachuabwong C; Phokharatkul D; Tuantranont A; Phanichphant S; Liewhiran C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24338-52. PubMed ID: 26479951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Adequate Operation of Amorphous Oxide Thin-Film Transistors for Low-Concentration Gas Detection.
    Kim KS; Ahn CH; Jung SH; Cho SW; Cho HK
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10185-10193. PubMed ID: 29493206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly selective and reversible NO
    Kumar R; Kulriya PK; Mishra M; Singh F; Gupta G; Kumar M
    Nanotechnology; 2018 Nov; 29(46):464001. PubMed ID: 30168448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide.
    Hu N; Yang Z; Wang Y; Zhang L; Wang Y; Huang X; Wei H; Wei L; Zhang Y
    Nanotechnology; 2014 Jan; 25(2):025502. PubMed ID: 24334417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and Efficient NO
    Shen Y; Wang K; Liu H; Chen L; Jin Z; Yan S
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Selectivity Hydrogen Gas Sensor Based on WO
    Nguyen VC; Cha HY; Kim H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast Response/Recovery and High Selectivity of the H
    Wu Z; Li Z; Li H; Sun M; Han S; Cai C; Shen W; Fu Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12761-12769. PubMed ID: 30860351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires.
    Van Hieu N; Khoang ND; Trung do D; Toan le D; Van Duy N; Hoa ND
    J Hazard Mater; 2013 Jan; 244-245():209-16. PubMed ID: 23246957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas Sensor by Direct Growth and Functionalization of Metal Oxide/Metal Sulfide Core-Shell Nanowires on Flexible Substrates.
    Yang D; Cho I; Kim D; Lim MA; Li Z; Ok JG; Lee M; Park I
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24298-24307. PubMed ID: 31187618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature.
    Park S; An S; Mun Y; Lee C
    ACS Appl Mater Interfaces; 2013 May; 5(10):4285-92. PubMed ID: 23627276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.